
Survey of Simulators for Aerial Robots

Cora A. Dimmig1,2, Giuseppe Silano3, Kimberly McGuire4, Chiara Gabellieri5, Wolfgang Hönig6,
Joseph Moore1,2, and Marin Kobilarov1

Abstract—Uncrewed Aerial Vehicle (UAV) research faces chal-
lenges with safety, scalability, costs, and ecological impact when
conducting hardware testing. High-fidelity simulators offer a
vital solution by replicating real-world conditions to enable the
development and evaluation of novel perception and control
algorithms. However, the large number of available simulators
poses a significant challenge for researchers to determine which
simulator best suits their specific use-case, based on each simula-
tor’s limitations and customization readiness. This paper includes
a systematic overview of 38 existing UAV simulators and presents
a set of decision factors for their selection, aiming to enhance
the efficiency and safety of research endeavors.

I. INTRODUCTION

Uncrewed Aerial Vehicles (UAVs) are being widely adopted
for a variety of use cases and industries, such as agriculture,
inspection, mapping, and search and rescue [1]. In particular,
aerial manipulation and human-robot interaction applications
have been on the rise, including tasks such as parcel delivery,
warehouse management, sample collection, and collaborative
robot operations [2], [3].

Testing experimental algorithms directly on hardware can
pose significant risks, as unexpected behaviors may emerge.
Moreover, crashes can incur substantial costs, disrupt devel-
opment schedules, and contribute to environmental harm due
to the frequent replacement of damaged vehicle components.
Additionally, in the context of the increasing adoption of
machine learning-based techniques, collecting data from hard-
ware can prove highly inefficient and often impracticable.
Hence, a dependable, fast, precise, and realistic UAV simulator
is essential to facilitate rapid advancements in this field. Due
to the rise of high-fidelity simulators, results from simulation
can often be efficiently transferred to hardware, however
challenges may arise in domains with unmodeled effects (e.g.
agile flight, close-proximity flight, UAV with manipulators or
with other physical connections, etc.).

In this work, we analyze some of the prominent UAV
simulators and key selection criteria and decision factors to

1Department of Mechanical Engineering, Johns Hopkins University, Balti-
more, Maryland, USA (emails: {cdimmig, marin}@jhu.edu).

2Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,
USA (email: joseph.moore@jhuapl.edu).

3Department of Cybernetics, Czech Technical University in Prague, Prague,
Czech Republic (email: giuseppe.silano@fel.cvut.cz).

4Bitcraze A.B., Malmo, Sweden (email: kimberly@bitcraze.io).
5Robotics and Mechatronics (RaM) Group, University of Twente, En-

schede, The Netherlands (email: c.gabellieri@utwente.nl).
6Intelligent Multi-Robot Coordination Lab, Technische Universität (TU)

Berlin, Germany (email: hoenig@tu-berlin.de).
This work was partially funded by the National Science Foundation

grant no. 1925189, by the EU’s MSCA FLYFLIC grant no. 101059875, by
the EU’s H2020 AERIAL-CORE grant no. 871479, and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - 448549715.

consider when selecting a simulator. Figure 1 demonstrates
the large spectrum of simulators and their use cases. This
research builds upon discussions and contributions made dur-
ing the workshop titled “The Role of Robotics Simulators
for Unmanned Aerial Vehicles” at the 2023 International
Conference on Robotics and Automation (ICRA) in London,
UK1. Specifically, our work addresses the following question:

Question: What criteria and considerations should guide
the selection and customization of a simulator
to optimize its suitability for a specific applica-
tion, while also understanding its limitations?

There are a few existing survey papers focusing on sim-
ulators and their role in robotics [4]. For example, a recent
survey [5] analyzes a wide range of application areas, in-
cluding aerial vehicles, and compares features across diverse
domains. Regrettably, not every simulator readily supports
UAVs. Dynamics considerations for manipulators or ground
vehicles can substantially differ from those of aerial vehicles,
especially in research that aims to account for aerodynamic
effects. In [6], the authors examine various considerations
for aerial delivery vehicles, including simulator selection. In
[7], the authors analyze simulators specific to aerial vehicles,
including some less commonly used simulators, and discuss
criteria for simulator selection.

We believe that the ensuing discussion and difficulty in
selecting a simulator requires a more focused survey paper
covering an expanded list of UAV simulators. We provide
readers with valuable insights based on our experiences in in-
ternational robotics competitions, innovative research projects,
and real-world applications, contemplate the future of simu-
lation tools, and provide consolidated information for readers
to explore effective solutions for their intended applications.

UAV DYNAMICS BACKGROUND

This section delves into fundamental concepts crucial
for a comprehensive understanding of UAV dynamics.
The focus here is on UAVs without morphing capabil-
ities (i.e. the ability for a vehicle to change its shape).
We define key parameters, including UAV mass (m),
inertia (J ∈ R3×3), position (p ∈ R3), global velocity
(v ∈ R3), attitude unit quaternion (q ∈ R4), and body
angular velocity (ω ∈ R3).

1https://imrclab.github.io/workshop-uav-sims-icra2023

ar
X

iv
:2

31
1.

02
29

6v
2

 [
cs

.R
O

]
 2

5
Ja

n
20

24

(a) Isaac Gym (Aerial Gym) (b) Flightmare (c) gym-pybullet-drones

(d) RotorTM (e) Aerostack2 (f) FlightGear
Figure 1. Examples of simulation environments: (a) 512 quadrotors training with Aerial Gym, (b) a quadrotor in Unity with Flightmare, (c) PID control with
three quadrotors in gym-pybullet-drones, (d) three quadrotors with a triangular payload in RotorTM, (e) a quadrotor with a drone racing gate in Aerostack2,
and (f) a Cessna 172P Skyhawk cockpit view in FlightGear.

A. Multirotors

Basic: The multirotor’s dynamics are modeled as a
6-Degree-of-Freedom (DoF) floating rigid body using
Newton-Euler formalism, as depicted in Fig. 2. This is
expressed as ẋ = f(x,u), with state x = (p,q,v,ω)⊤

and control input uΩ = (Ω1, . . . ,Ωn)
⊤, where Ωi ∈

R≥0, with i = {1, . . . , n}, denotes the i-th squared
motor speed [1]. The motors exert forces and torques
on the multirotor’s Center of Mass (CoM), aggregated
as f =

∑
i cfiΩizPi

= FuΩ and τ =
∑

i(cfipi×zPi
+

cτizPi)Ωi = MuΩ, respectively. Here, cfi and cτi de-
note constant parameters dependent on the propeller’s
shape, pi ∈ R3 is the rotor’s position in the body
frame, zPi

∈ R3 is a unit vector parallel to the rotor’s
rotation axis, and F ∈ R3×n and M ∈ R3×n are the
force and torque allocation matrices, respectively. The
model can be extended for UAVs with tilting propellers
by introducing an additional control variable uw for
real-time adjustment of F(uw) and M(uw) allocation
matrices [2]. Hence, the dynamics are:

ṗ = v, mv̇ = mg +R(q)FuΩ + fa,

q̇ =
1

2
q ◦

[
0
ω

]
, Jω̇ = −ω × Jω +MuΩ + τa,

(1)
where ◦ and × represent quaternion and vector cross
products, respectively; g = (0, 0,−g)⊤, where g is the
acceleration due to gravity; R ∈ SO(3) is the body-
to-global rotation matrix; fa and τa are external forces
and torques acting on the UAV.

Drag: Multirotors encounter extra aerodynamic drag
forces fa and torques τa at high speeds (relative to
the surrounding airflow), which are generally treated
as disturbances proportional to the velocity (fa ∝ v
and τa ∝ ω) [8].

OB

zB
yB

xB

OW

zW

yW

xW

p

R

zP

τ

zP
τ

zP
τ

zPτ

Figure 2. Schematic representation of a multirotor with its
global FW = {OW ,xW ,yW , zW } and body FB =
{OB ,xB ,yB , zB} frames.

Wind: Wind is typically modeled by a spatio-
temporal-varying external force fa(pw, t), where pw

and t represent the global position and time, respec-
tively [1].
Interactions: In close-proximity flight, multirotors ex-
perience aerodynamic interaction forces, often mod-
eled as a learned function fa based on relative neighbor
poses [9].

B. Fixed-wing

Basic: For fixed-wing UAVs, like multirotors, the
equations of motion can be derived from the Newton-
Euler formalism. Modeling external forces often in-
volves calculating the force fsi contributed by each
aerodynamic surface si, with i = {1, . . . , k} and k
representing the total number of surfaces [10], [11].
These forces can then be aggregated to compute the
total external aerodynamic force and torque as:

fa =
∑

i fsi , τa =
∑

i(lsi × fsi). (2)

Here, lsi is the displacement from the CoM to the
surface’s aerodynamic center (e.g., the center of lift).
Hence, we use:

fsi =
1

2
ρ|vsi |2Si (cLi

eLi
+ cDi

eDi
) , (3)

where ρ is the air density, and for the i-th surface:
vsi is the relative wind at the surface’s aerodynamic
center in the surface frame, Si is the surface area, cLi

is the lift coefficient, cDi is the drag coefficient, eDi =
vsi/∥vsi∥ is the unit vector in the drag direction, and
eLi

is the unit vector in the lift direction, which is
perpendicular to eDi

. The relative wind is given as:

vsi = −R⊤
si

(
R(q)⊤v + ω × lsi

)
, (4)

where Rsi ∈ SO(3) is the body-to-surface rotation
matrix. For control surfaces with a single DoF, both
Rsi and lsi depend on the control surface deflection,
δi. These deflections are treated as additional control
variables uδ = (δ1, . . . , δc)

⊤ with c control surfaces.
Typical aerodynamic surfaces include wings and ver-
tical or horizontal stabilizers; typical control surfaces
are ailerons, rudder, and elevator [10], [11].
Lift and Drag: For fixed-wings, lift and drag forces
play pivotal roles in vehicle simulation. The coeffi-
cients cLi and cDi can be derived by combining airfoil
data at low angle-of-attack with high angle-of-attack
approximations obtained from flat-plate theory [12].
Additionally, these coefficients can also be partly or
entirely data-driven (e.g., [13]). For more detailed and
high-fidelity models, significant aerodynamic surfaces
can be segmented to incorporate additional external
forces, such as friction drag and unsteady effects [14].
Furthermore, fixed-wing simulations can account for
the influence of propeller backwash, as addressed in
[10].
Wind: Wind is modeled as a spatio-temporal-varying
additive velocity, which contributes directly to the vsi

term [15].
Interactions: Ground effects can notably affect the be-
havior of fixed-wing UAVs during landing maneuvers.
Like multirotors, data-driven approaches are effective
for capturing this effect by relating the coefficient cLi

to ground proximity [16].

C. Aerial manipulators

Basic: Aerial manipulators are a diverse category of
UAVs composed of an aerial base and an end-effector,
with common types including rigid tools, articulated
arms, and cables. Here, we focus on the most common
description, excluding advanced techniques like soft
manipulation [17].
Rigid Tools: For aerial manipulators with rigid tools,
their dynamics align with (1), with adjustments for
the tool’s inertial properties. The terms fa and τa
account for the wrench applied at the end-effector. If
fe and τe represent the force and torque in the body
frame exerted by the environment on the end-effector,
assuming these are the sole external forces and torques,
then the corresponding wrench at the CoM is:

fa = R(q)fe, τa = [pe]× fe + τe, (5)

where [•]× maps a vector to its skew-symmetric ma-
trix, and pe is the end-effector tip’s position in the
body frame.
Articulated Arms: For manipulators with articulated
arms, the system’s dynamics become more complex,
see [18].
Cables: Cables are typically modeled as massless rigid
or elastic elements attached via passive spherical joints
to the robot’s CoM [19]. In this scenario, the dynamic
equations in (1) remain valid, with fa accounting for
the cable’s force. Notably, this formulation does not
consider an external torque to be applied to the robot
by the cable [18]. Hence, we can write:

fa = R(q)fe, τa = 03×1. (6)

II. UAV SIMULATORS

A primary consideration when selecting a simulator is the
specific application domain and whether the available simula-
tors offer the necessary features and sensors tailored to that
domain. Additionally, compatibility with common autopilots,
like PX4 and ArduPilot, is often a consideration to enable
rapid simulation to hardware transfer. Drawing from our own
experiences and the referenced literature, we compiled a set of
selection criteria and decision factors that are regularly con-
sidered when evaluating UAV simulators. These comparative
points are outlined in Table I. Table II categorizes a range of
UAV simulators based on their key elements. Some simulators
may belong to multiple categories. What follows offers a
concise overview of each simulator featured in Table II.

A. Universal simulators

Gazebo Classic [20] is an open-source, continuously main-
tained, versatile research simulation platform with a modular
design, accommodating different physics engines, sensors, and
3D world creation. Particularly noteworthy is its suitability
for aerial manipulator tasks, owing to its ease of creating
contact surfaces with customizable frictions [21], [22]. RotorS

Table I
SELECTION CRITERIA FOR UAV SIMULATORS

Criteria Decision Factors

Physics Fidelity Required fidelity of physics and dynamics model
for the intended use case

Visual Fidelity Necessity for realistic images, e.g., for computer
vision or Machine Learning (ML) applications

Autopilots Compatibility with common autopilots like PX4
and ArduPilot, useful for Software-In-The-Loop
(SITL) and Hardware-In-The-Loop (HITL) testing

Multiple Vehicles Capability to concurrently simulate vehicles

Heterogeneity Integration possibilities with other platforms

Sensors Integration support for common sensors (e.g., cam-
eras, IMU, GPS, LiDAR, optical flow)

UAV Models Support of common UAV models and ease of
integrating new models

Simulation Speed Real-time speed and ability to run in super real-
time, crucial for learning applications

APIs Compatibility with programming languages, mid-
dleware like ROS, and packages such as OpenAI
Gym (now Gymnasium)

Integration Ease of getting started and development as well as
whether the software is actively maintained

Table II
UAV SIMULATORS CATEGORIZATION

Category Simulators

Universal Simulators Gazebo Classic (RotorS, CrazyS, PX4 SITL),
Gazebo, Isaac Sim/Gym (Pegasus, Aerial Gym),
Webots, CopelliaSim, MuJoCo

Sensor-
Focused

Vision AirSim, Flightmare, FlightGoggles
LiDAR MARSIM

Learning-Focused Isaac Gym (Aerial Gym), MuJoCo, PRL4AirSim,
Flightmare, gym-pybullet-drones, safe-control-
gym, QuadSwarm, fixed-wing-gym, QPlane

Dynamics-Focused RotorTM, MATLAB UAV Toolbox, PyFly, AR-
CAD, HIL-airmanip, RotorPy, Agilicious

Swarming gym-pybullet-drones, QuadSwarm, Potato

Part of flight stacks Agilicious, MRS UAV System, CrazyChoir,
Crazyswarm2, Aerostack2

Flight Simulators X-Plane (X-PlaneROS), FlightGear, RealFlight

[23], built on top of Gazebo Classic, offers a modular frame-
work for designing UAVs and developing control algorithms,
particularly focusing on simulating the vehicle dynamics.
CrazyS [24], an extension of RotorS, focuses on modeling
the Crazyflie 2.0 quadrotor. However, both RotorS and CrazyS
have limited perception-related capabilities. PX4 SITL Gazebo
[25], partially originated from RotorS, includes the latest
support for PX4 SITL, does not depend on ROS, and supports
simulating a large number of vehicles. Additionally, PX4 SITL
includes an airspeed sensor, which is essential for fixed-wing
and Vertical Take-Off and Landing (VTOL) vehicle simula-
tions. The new Gazebo [26], formerly known as Ignition, is
the successor of Gazebo Classic and incorporates quadrotor
dynamics and control inspired by the RotorS project. Gazebo
enables dynamic loading and unloading of environment com-
ponents, addressing challenges faced by Gazebo Classic in
replicating large, realistic environments. Moreover, Gazebo
offers improved interfaces for simulating radio communication

between multiple UAVs.
Isaac Sim [27], developed by NVIDIA, is a photorealistic

high-fidelity simulator for a variety of platforms. Pegasus
Simulator [28] is an open-source extension to Isaac Sim that
includes an extended multirotor dynamics model, simulating
multiple vehicles in parallel, integration with PX4 and ROS 2,
and additional sensors (magnetometer, GPS, and Barometer).
Isaac Gym [29] is an NVIDIA’s library for GPU-accelerated
Reinforcement Learning (RL) simulations and uses more basic
rendering than Isaac Sim. Aerial Gym [30] is an open-source
extension to Isaac Gym Preview Release 4 notable for its capa-
bility to parallelize the simulation of thousands of multirotors
and includes customizable obstacle randomization.

Webots [31] is an open-source, versatile robotics simulator
known for its wide range of robotic platforms. While Webots
primarily focuses on ground-bound robots, it also features
two quadrotor models with simplified aerodynamic physics.
Webots uses ODE for physics simulation, refer to [32] for a
comprehensive analysis. Notably, Webots has been used for
innovative vehicle designs, such as a triphibious robot in [33].

CoppeliaSim [34], previously known as V-REP, is a versatile
robotics simulator with support for a wide range of program-
ming languages and physics engines. Selecting the appropriate
physics engine is crucial to avoid undesirable outcomes, such
as velocity or position jumps, unrealistic collision behaviors,
and erratic sensor outputs [32]. CoppeliaSim has been used
for applications such as UAV obstacle avoidance [35].

MuJoCo [36], or Multi-Joint dynamics with Contact, is a
frequently employed physics engine in ML applications. It
offers interactive visualization rendered with OpenGL and
encompasses various platforms, including a UAV model (i.e.
the Skydio X2 quadrotor).

B. Domain specific simulators

AirSim [37] is a Microsoft-led project built on the Unreal
Engine, offering various sensors, a weather API, and compati-
bility with open-source controllers like PX4. AirSim primarily
serves as a platform for AI research, providing platform-
independent APIs for data retrieval and vehicle control. No-
tably, AirSim demands substantial computing power compared
to other simulators. PRL4AirSim [38] is an extension designed
for efficient parallel training in RL applications. The original
AirSim is open-source, but will no longer be supported by
Microsoft. Their focus has shifted to Project AirSim, which
will be released under a commercial license.

Flightmare [39] is a versatile simulator with two main
components: a Unity-based rendering engine and a physics
model, both designed for flexibility and independent operation.
The rendering engine can generate realistic visual information
and simulate sensor noise, environmental dynamics, and lens
distortions with minimal computational overhead. Similarly,
the physics model allows users to control robot dynamics,
ranging from basic noise-free UAVs models to advanced rigid-
body dynamics with friction and rotor drag, or even real
platform dynamics. Flightmare is extensively used for ML
applications, such as for autonomous drone racing [40].

FlightGoggles [41], similarly to Flightmare, is an open-
source simulator focused on photorealistic simulation. Flight-
Goggles combines two key elements: (i) photogrammetry for
realistic simulation of camera sensors, and (ii) virtual reality
to integrate real vehicle motion and human behavior in the
simulations. FlightGoggles is built around the Unity engine
and includes multirotor physics with motor dynamics, basic
vehicle aerodynamics, and IMU bias dynamics. A key fea-
ture of FlightGoggles is the “vehicle-in-the-loop simulation,”
where the vehicle is flown in a motion capture system, camera
images and exteroceptive sensors are simulated in Unity, and
collision detection is based on the real-world vehicle’s pose.

gym-pybullet-drones [42] is an open-source environment
designed for simulating multiple quadrotors with PyBullet [43]
physics, tailored for research that combines control theory and
ML. This library has interfaces for multi-agent and vision-
based RL applications, utilizing the Gymnasium APIs [44]. It
supports the definition of various learning tasks on a Crazyflie
platform. Notably, gym-pybullet-drones includes realistic col-
lisions and aerodynamic effects (e.g., drag, ground effect, and
downwash). It includes example RL workflows for single agent
and multi-agent scenarios, leveraging Stable-baselines3 [45].

RotorTM [46] is an open-source simulator for aerial ob-
ject manipulation. Notably, this simulator considers cable-
suspended loads and passive connection mechanisms between
multiple vehicles, a feature lacking in other common simu-
lators. In RotorTM, the cables are considered massless and
connected to the robot’s CoM. They can transition from taut
to slack during task execution, allowing users to customize
the number of robots and the type of payload (e.g., rigid body
or point mass). Additionally, the simulator accommodates
scenarios where aerial robots are rigidly attached to the load.
RotorTM assumes negligible drag on the payload and aerial
robot and disregards aerodynamic effects, considering rotor
dynamics to be significantly faster than other factors.

MATLAB UAV Toolbox [47] is a general purpose tool-
box for designing, simulating, testing, and deploying UAVs
within MATLAB. It includes tools for algorithm development,
flight log analysis, and simulation. The simulation capabilities
include a cuboid simulation for quickly constructing new
scenarios and a photorealistic 3D simulation environment with
synthesized camera and LiDAR readings. The toolbox includes
an interface for deploying directly to hardware through PX4-
based autopilots. Additionally, the MAVLink protocol is sup-
ported. Researchers have explored using the MATLAB UAV
Toolbox with flight simulators [48] such as X-Plane, Flight-
Gear, and, in other works (as mentioned in [48]) RealFlight.

safe-control-gym [49] is an open-source safety-focused RL
environment and benchmark suite, built using the PyBullet
physics engine [43], for comparing control and RL approaches.
Three dynamics systems (cart-pole, 1D and 2D quadrotor) and
two control tasks (stabilization and trajectory tracking) are
included. This simulation environment supports model-based
and data-based approaches, expresses safety constraints, and
captures real-world properties (such as uncertainty in physical
properties and state estimation).

MARSIM [50] is an open-source C/C++ library primarily
focused on accurately simulating LiDAR measurements for
UAVs. It constructs depth images from point cloud maps and
interpolates them to obtain LiDAR point measurements. The
simulator is designed for lightweight computation and offers
access to 10 high-resolution environments, including forests,
historic building, office, parking garage, and indoor settings.

QuadSwarm [51] is an open-source Python library for multi-
quadrotor simulation in RL applications, emphasizing fast
simulation and the transfer of policies from simulation to
the real-world. QuadSwarm provides diverse training scenarios
and domain randomization to support RL applications, show-
casing zero-shot transfer of RL control policies for single and
multi-quadrotor scenarios. The physics model is based on the
Crazyflie platform, with OpenGL used for rendering.

PyFly [52] is an open-source Python simulator designed for
fixed-wing aircraft. It includes a 6-DoF aerodynamic model,
wind effects, and stochastic turbulence. fixed-wing-gym [52]
is an OpenAI Gym wrapper specifically tailored for PyFly,
aiming at facilitating RL applications.

ARCAD [53], or AirLab Rapid Controller and Aircraft De-
sign, is an open-source MATLAB simulator for fully-actuated
multirotors. Its primary goals are to expedite the modeling,
design, and analysis of new aircraft and controllers and the
visualization of tasks involving physical interactions, including
controlled force-based tasks like writing text on a wall.

HIL-airmanip [54] offers a distinctive environment for
simulating physical interactions between humans and aerial
robots, enabling real-time human involvement. In this simula-
tor, the forces exchanged between the human operator and a
haptic interface are accurately measured and then transmitted
to an aerial manipulator, which is modeled within the RotorS
environment. This robotic system consists of a quadrotor
combined with a 6-DoF arm mounted beneath it.

RotorPy [55] is an open-source Python simulator meant
to be lightweight and focused on providing a comprehensive
quadrotor model. Its development emphasizes accessibility,
transparency, and educational value, initially created as a
teaching tool for a robotics course at the University of
Pennsylvania. In [55], the simulator’s quadrotor model is
extensively detailed, including 6-DoF dynamics, aerodynamic
wrenches, actuator dynamics, sensors, and wind models. The
model’s validity is verified using a Crazyflie performing agile
maneuvers.

Potato [56] is a simulator based on data-oriented program-
ming for large-scale swarm simulations. Like Isaac Gym,
Potato relies on GPU computation rather than CPU. It includes
basic dynamics for fixed-wing drones, quadrotors, and cars.
Potato is not currently open-source, but the authors of [56]
expressed the intention to open-source the quadrotor part of
the simulator in the future.

C. Simulators part of flight stacks

Agilicious [57] contains a hardware description for a
quadrotor with a Jetson TX2 and a software library specif-
ically meant for autonomous and agile quadrotor flight. For

simulation, it has a custom modular simulator that incorporates
highly accurate aerodynamics based on blade-element momen-
tum theory or with other tools like RotorS, HITL setups, and
rendering engines such as Flightmare. The stack uses a custom
license, but is free to use for academics after registration.

MRS UAV System [58] is a flight stack designed for repli-
cable research through realistic simulations and real-world
experiments. Its software stack includes a simulation environ-
ment built on Gazebo Classic, CoppeliaSim, or their MRS-
multirotor-simulator for quadrotor dynamics, complete with
realistic sensors and models. A key feature is its full com-
patibility with multiple ROS releases, coupled with ongoing
active use and maintenance. Moreover, this stack is frequently
used for teams of multirotors.

CrazyChoir [59] is an open-source modular ROS 2 frame-
work designed for conducting realistic simulations and experi-
ments involving cooperating Crazyflie drones. For simulation,
it builds on Webots with a SITL of the Crazyflie firmware.

Crazyswarm2 [60] is an open-source framework designed
for controlling large indoor quadrotor swarms, specifically
utilizing Crazyflie drones, similarly to CrazyChoir. For simu-
lation it also relies on SITL of the firmware with a modular
simulation framework that currently supports pure visualiza-
tion or an ad hoc Python-based physics simulation.

Aerostack2 [61] is a versatile open-source flight stack de-
signed to be compatible with various UAV platforms, including
PX4, ArduPilot, DJI, and Crazyflie. For simulation purposes,
Aerostack2 utilizes Gazebo with custom sensors. However, it
does not currently have support for (S/H)ITL simulations.

D. Flight simulators

X-Plane [62] is a commercial cross-platform flight simu-
lator. As with most flight simulators, the primary audience
is pilots. X-Plane emphasizes realistic dynamics and includes
simulated weather, wind, and lighting conditions. X-PlaneROS
[63] is a X-Plane ROS wrapper for controlling large-scale
fixed-wing vehicles, extracting aircraft data from the simulator,
and enables human-robot interaction. QPlane [64] is a RL
toolkit for fixed-wing simulation that can use external flight
simulators, such as X-Plane and/or FlightGear.

FlightGear [65] is an open-source, user supported, cross-
platform flight simulator. Some researchers have explored
using this flight simulator for UAV simulation, such as in [66].

RealFlight [67] is a commercial Windows Radio Controlled
(RC) flight simulator that includes small multirotor and fixed-
wing vehicles. Researchers have adopted this flight simulator
for UAV simulation, such as in [68].

III. UAV SIMULATOR COMPARISON

We provide three tables that compare essential features of
aerial simulators, using selection criteria discussed in Table I.
These tables include extensively utilized simulators for aerial
vehicles. For brevity, we omitted simulators that are less
versatile or relatively new, leading to limited adoption.

Table III presents a comparison of notable features within
the simulation environments. Notably, OpenGL and OGRE

rendering are often regarded as having low visual fidelity,
while Vulkan, Unity, and Unreal rendering are considered
to offer high visual fidelity. The Operating System (OS)
subcategories are Linux, Windows, and Mac, denoted as “L,”
“W,” “M,” respectively. “RL” is included as an interface to
indicate specialization for RL applications. The category de-
noted as (S/H)ITL includes interfaces for both SITL and HITL
capabilities, with “CF” representing Crazyflie. We include a
column indicating the maintenance status at the time of writing
this paper. Simulators under active maintenance are marked
with ✓. Simulators that have been inactive but show some
commits and responses to issues in the past two years are
marked with ✱. Finally, simulators that are intentionally no
longer maintained or have been inactive for more than two
years are marked with ✗. As maintenance statuses may change
over time, we advise readers to consider this information as a
snapshot and to reevaluate before choosing a simulator.

Table IV compares the vehicle types that can be simulated,
referencing the dynamics detailed in Sec. I. In the “Swarms”
column, we specify packages designed for swarm purposes
with ✓, packages that allow multiple vehicles (though not
specifically designed for swarms) with ✱, and packages in-
tended solely for single vehicles with ✗.

Table V provides a comparison of supported sensors for
each simulator. Segmentation, magnetometer, and barometer
are abbreviated as “Seg,” “Mag,” and “Baro,” respectively.

We indicate features, vehicle types, and sensors supported
in the base configurations of these simulators, acknowledging
that many of them can be extended for more extensive support.

IV. DISCUSSION

The aerial robotics community has undeniably made sig-
nificant strides in the development of simulators. However,
a significant challenge lies in the fact that the specific re-
quirements of various research groups tend to be platform-
dependent and application-dependent, making it challenging to
provide to all needs with a single simulator. Moreover, there
is a growing consensus that exploring diverse solutions, rather
than relying solely on one, can yield more favorable outcomes.
Conversely, there is a compelling argument for standardization
within this domain, as it would greatly facilitate benchmarking
efforts and foster collaboration among researchers. Striking
a balance between these two perspectives appears to be the
most prudent approach. This entails directing resources and
effort towards a select few simulators to harness the advantages
inherent in both sides of the spectrum mentioned earlier. As
a result, several key themes emerge, including the role of
aerodynamics in simulation, the need for benchmarking, the
relationship between academia and industry, data sharing, and
the challenges associated with maintaining these simulators.

Aerodynamics and Simulation: One central topic revolves
around the role of aerodynamics in UAV simulations. While it
is acknowledged that many successful UAV applications do not
necessitate intricate aerodynamic modeling, in some scenarios
such modeling becomes indispensable. Particular attention is
drawn to scenarios involving UAVs navigating in constrained

Table III
COMPARISON OF FEATURES FOR WIDELY USED UAV SIMULATORS: INCLUDED (✓), PARTIALLY INCLUDED (✱), AND NOT INCLUDED (✗)

Simulator Physics
Engine Rendering

OS
Interfaces (S/H)ITL License Open-

Source Active Ref.
L W M

Gazebo Classic
(RotorS,
CrazyS,
PX4 SITL)

ODE,
Bullet,
DART,

Simbody

OGRE ✓ ✱
(✗,
✗,
✗)

✓
(✗,
✗,
✓)

ROS 1/2, C++,
RL

PX4,
ArduPilot, CF

Apache-2.0 ✓ ✓
(✗,
✱,
✓)

[20]
([23]–
[25])

Gazebo Bullet,
DART, TPE

OGRE ✓ ✱ ✓ ROS 1/2, C++,
Python, RL

PX4,
ArduPilot, CF

Apache-2.0 ✓ ✓ [26]

Isaac (Pegasus,
Aerial Gym)

NVIDIA®

PhysX, Flex
Vulkan ✓ ✗ ✗ ROS 1/2,

Python, RL
Pegasus: PX4 Proprietary

(BSD 3)
✗ (✓,

✓)
✓ [27]–

[30]

Webots ODE OpenGL ✓ ✓ ✓ ROS 1/2,
C/C++, Python,
MATLAB, Java

ArduPilot, CF Apache-2.0 ✓ ✓ [31]

CoppeliaSim Bullet,
ODE,Vortex,

Newton,
MuJoCo

OpenGL ✓ ✓ ✓ ROS 1/2,
C/C++, Python,
MATLAB, Java,

Lua, Octave

— GNU GPL,
Commerical

✱ ✓ [34]

AirSim NVIDIA®

PhysX
Unreal,
Unity

✓ ✓ ✓ ROS 1, C++,
Python, C#,

Java, RL

PX4, ArduPilot MIT ✓ ✗ [37]

Flightmare Ad hoc,
Gazebo
Classic

Unity ✓ ✗ ✗ ROS 1, C++,
RL

— MIT ✓ ✗ [39]

FlightGoggles Ad hoc Unity ✓ ✱ ✗ ROS 1, C++ Motion
Capture

MIT ✓ ✗ [41]

gym-pybullet-
drones

PyBullet OpenGL ✓ ✱ ✓ Python, RL Betaflight, CF MIT ✓ ✓ [42]

RotorTM Ad hoc OpenGL ✓ ✗ ✗ ROS 1, Python,
MATLAB

— GNU GPL ✓ ✓ [46]

MATLAB
UAV Toolbox

MATLAB Unreal ✓ ✓ ✓ ROS 2,
MATLAB

PX4 Proprietary,
Commercial

✗ ✓ [47]

Table IV
COMPARISON OF VEHICLE TYPES FOR WIDELY USED UAV SIMULATORS: INCLUDED (✓), PARTIALLY INCLUDED (✱), AND NOT INCLUDED (✗)

Simulator
Multirotor

Fixed-wings Aerial
Manipulators Swarms Cars Other

Vehicles Ref.
Basic Drag Wind

Gazebo (Classic & New) ✓ ✓ ✓ ✓ ✱ ✱ ✓ ✓ [20], [26]

Isaac (Pegasus, Aerial Gym) ✓ ✗ (✓, ✗) ✗ ✗ ✗ ✓ ✓ (✗, ✗) ✓ (✗, ✗) [27]–[30]

Webots ✓ ✗ ✗ ✗ ✗ ✱ ✓ ✓ [31]

CoppeliaSim ✓ ✓ ✱ ✗ ✱ ✱ ✓ ✓ [34]

AirSim ✓ ✓ ✓ ✗ ✗ ✱ ✓ ✗ [37]

Flightmare ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ [39]

FlightGoggles ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ [41]

gym-pybullet-drones ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ [42]

RotorTM ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ [46]

MATLAB UAV Toolbox ✓ ✓ ✓ ✓ ✗ ✱ ✗ ✗ [47]

environments, adapting to dynamic environmental conditions,
or engaging in interactions with other drones. In these cases,
there is a critical need for incorporating aerodynamics into
simulator development, which is even more valid for fixed-
wing flight. On the other hand, it is important to note that for
most of the applications involving multirotors, even for aerial
manipulation tasks, aerodynamics play a less significant role.

Benchmarking and Standardization: The large number of
simulators in existence necessitates benchmarking and stan-
dardization in this field. The absence of a unified benchmark-
ing framework and standardization practices pose substantial

challenges for researchers and developers alike. Addressing
this issue emerges as a primary objective, as it has become
evident that standardized benchmarking is paramount for
enhancing the reproducibility and comparability of research
within the UAV and more generally, the robotics domain, as
many simulators are designed to be general purpose, such as
the universal simulators from Sec. II-A.

Academia versus Industry: It is evident from the data
reported in the tables that there is a distinction between
simulators developed in academic and industrial settings. It
is universally acknowledged that academic simulators have

Table V
COMPARISON OF INCLUDED SENSORS FOR WIDELY USED AERIAL VEHICLE SIMULATORS: INCLUDED (✓) AND NOT INCLUDED (✗)

Simulator RGB Depth Seg. Point Cloud IMU Mag. GPS Baro. LiDAR Optical Flow Ref.

Gazebo (Classic & New) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ [20], [26]

Isaac Sim (Pegasus) ✓ ✓ ✓ ✓ ✓ ✗ (✓) ✗ (✓) ✗ (✓) ✓ ✓ [27], [28]

Isaac Gym (Aerial Gym) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ [29], [30]

Webots ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ [31]

CoppeliaSim ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ [34]

AirSim ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ [37]

Flightmare ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ [39]

FlightGoggles ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ [41]

gym-pybullet-drones ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ [42]

RotorTM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ [46]

MATLAB UAV Toolbox ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ [47]

played a pivotal role in advancing research. However, aca-
demic simulators often grapple with sustainability challenges,
particularly after the researchers responsible for their develop-
ment, mainly doctoral students, graduate. In contrast, industry-
backed simulators are characterized by robust support, con-
tinuous documentation, and sustained evolution. Striking a
harmonious balance between academic and industry-driven
simulator development emerges as a critical goal for the future.

Data Sharing and Collaboration: What also emerges from
the above discussion is the need for data sharing within the
research community and with industry partners. It is pivotal to
emphasize the importance of sharing simulator data and mod-
els for making progress in the field. The potential advantage of
shared datasets, particularly in the domains of perception and
autonomous navigation, are evident. Collaborative endeavors
and knowledge sharing among researchers can catalyze forces
for simulator improvements and innovation.

Resource Identification: The numerous simulators dis-
cussed in this paper highlight the challenges newcomers face
when selecting the most suitable simulator for their research.
The demand for resources to streamline the selection process
is clear. This guided the authors’ choice to write a survey
to assist researchers and developers in navigating the diverse
landscape of simulators and making well-informed choices.

Accessibility and Maintenance: When selecting a sim-
ulator, it is crucial to weigh factors like accessibility and
maintainability. The simulator’s licensing has a significant
impact on its utility and adaptability to research requirements.
Simulators lacking open-source availability, a free proprietary
license, or an academic license, can pose obstacles to replicat-
ing work. We encourage researchers to understand the license
restrictions for a chosen simulator. Additionally, open-source
simulators can be preferable when custom modifications to
the simulator’s source code are necessary due to missing fea-
tures. Furthermore, evaluating the long-term sustainability of
a simulator is essential. A simulator that is no longer actively
maintained may become unstable on newer operating systems
and may lack updated integration support for middleware like
ROS. This can cause researchers to divert valuable time and
effort from their experiments to maintaining the simulator.

V. CONCLUSIONS

Selecting a simulator that is best for a particular application
space can be challenging, but rewarding when it increases
safety and reduces testing time and cost. In this paper, we
discussed some of the prominent robotic simulators for aerial
vehicles. We enumerate possible decision factors to consider
when selecting a simulator and we compare features, included
vehicle types, and integrated sensors across many widely used
simulation packages. For researchers new to the field, we
recommend starting with a well-supported universal simulator
(e.g. Gazebo) and then using this paper to identify specialized
solutions as needed. We hope that this analysis will be valuable
to the community when embarking on aerial vehicle research
and selecting a simulation environment.

ACKNOWLEDGMENT

We gratefully acknowledge feedback from Geoffrey Biggs,
Addisu Taddese, Jaeyoung Lim, Jay Patrikar, Marcelo Jacinto,
João Pinto, Mihir Kulkarni, Marc Freese, Yunlong Song,
Jacopo Panerati, Angela Schoellig, and Guanrui Li.

REFERENCES

[1] S. Leutenegger, et al., Flying Robots. Springer Handbook of Robotics,
Springer, 2016, pp. 623–670.

[2] A. Ollero, et al., “Past, Present, and Future of Aerial Robotic Manipu-
lators,” IEEE Trans. Rob., vol. 38, no. 1, pp. 626–645, 2022.

[3] A. Kolling, et al., “Human Interaction With Robot Swarms: A Survey,”
IEEE Trans. on Hum.-Mach. Syst., vol. 46, no. 1, pp. 9–26, 2016.

[4] C. K. Liu et al., “The Role of Physics-Based Simulators in Robotics,”
Ann. Rev. of Contr., Rob., and Aut. Syst., vol. 4, no. 1, pp. 35–58, 2021.

[5] J. Collins, et al., “A Review of Physics Simulators for Robotic Appli-
cations,” IEEE Acc., vol. 9, pp. 51 416–51 431, 2021.

[6] J. Saunders, et al., “Autonomous aerial robotics for package delivery:
A technical review,” J. of Fie. Rob., pp. 1–47, 2023.

[7] A. Mairaj, et al., “Application specific drone simulators: Recent ad-
vances and challenges,” Sim. Mod. Pr. and Th., vol. 94, pp. 100–117,
2019.

[8] M. Faessler, et al., “Differential Flatness of Quadrotor Dynamics Subject
to Rotor Drag for Accurate Tracking of High-Speed Trajectories,” Robot.
Autom. Lett., vol. 3, no. 2, pp. 620–626, 2018.

[9] G. Shi, et al., “Neural-Swarm2: Planning and Control of Heterogeneous
Multirotor Swarms Using Learned Interactions,” IEEE Trans. Rob.,
vol. 38, no. 2, pp. 1063–1079, 2022.

[10] M. Basescu et al., “Direct NMPC for Post-Stall Motion Planning with
Fixed-Wing UAVs,” in Int. Conf. Rob. Aut., 2020, pp. 9592–9598.

[11] F. Sobolic et al., “Nonlinear Agile Control Test Bed for a Fixed Wing
Aircraft in a Constrained Environment,” in AIAA Inf. Aer. Conf. and
AIAA Unm.... Unl. Conf., 2009, p. 1927.

[12] S. Hoerner, “Fluid-dynamic lift,” Hoerner Fluid Dynamics, 1985.
[13] M. Basescu, et al., “Precision Post-Stall Landing Using NMPC With

Learned Aerodynamics,” Robot. Autom. Lett., vol. 8, no. 5, pp. 3031–
3038, 2023.

[14] W. Khan et al., “Modeling dynamics of agile fixed-wing UAVs for real-
time applications,” in Int. Conf. on Unm. Air. Sys., 2016, pp. 1303–1312.

[15] M. Basescu, et al., “Agile fixed-wing UAVs for urban swarm operations,”
Fie. Rob., vol. 3, pp. 725–765, 2023.

[16] P. R. Ambati et al., “Robust auto-landing of fixed-wing UAVs using
neuro-adaptive design,” Contr. Eng. Pr., vol. 60, pp. 218–232, 2017.

[17] A. Gomez-Tamm, et al., “Current State and Trends on Bioinspired
Actuators for Aerial Manipulation,” in Int. Work. on Res., Ed. and Dev.
of Unm. Aer. Sys., 2019, pp. 352–361.

[18] X. Meng, et al., “Survey on Aerial Manipulator: System, Modeling, and
Control,” Robotica, vol. 38, no. 7, pp. 1288–1317, 2020.

[19] C. Gabellieri, et al., “Equilibria, Stability, and Sensitivity for the Aerial
Suspended Beam Robotic System Subject to Parameter Uncertainty,”
IEEE Trans. Rob., vol. 39, no. 5, pp. 3977–3993, 2023.

[20] N. Koenig et al., “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in Int. Conf. Int. Rob. Syst., vol. 3, 2004,
pp. 2149–2154 vol.3.

[21] A. Suarez, et al., “Compliant Bimanual Aerial Manipulation: Standard
and Long Reach Configurations,” IEEE Acc., vol. 8, pp. 88 844–88 865,
2020.

[22] C. A. Dimmig, et al., “A Small Form Factor Aerial Research Vehicle
for Pick-and-Place Tasks with Onboard Real-Time Object Detection and
Visual Odometry,” in Int. Conf. Int. Rob. Syst., 2023, pp. 6289–6296.

[23] F. Furrer, et al., “RotorS — A Modular Gazebo MAV Simulator
Framework,” ROS The Complete Reference, vol. 1, pp. 595–625, 2016.

[24] G. Silano, et al., “CrazyS: A Software-In-The-Loop Platform for the
Crazyflie 2.0 Nano-Quadcopter,” in Med. Conf. on Contr. and Aut., 2018,
pp. 352–357.

[25] PX4, “Gazebo Classic Simulation.” [Online]. Available: http://docs.px4.
io/main/en/sim gazebo classic/

[26] Open Robotics, “Gazebo.” [Online]. Available: https://gazebosim.org/
[27] NVIDIA, “Isaac Sim.” [Online]. Available: https://developer.nvidia.

com/isaac-sim
[28] M. Jacinto, et al., “Pegasus Simulator: An Isaac Sim Framework for

Multiple Aerial Vehicles Simulation,” arXiv:2307.05263, 2023.
[29] V. Makoviychuk, et al., “Isaac Gym: High performance GPU-based

physics simulation for robot learning,” arXiv:2108.10470, 2021.
[30] M. Kulkarni, et al., “Aerial Gym–Isaac Gym Simulator for Aerial

Robots,” arXiv:2305.16510, 2023.
[31] O. Michel, “Cyberbotics Ltd. Webots™: Professional Mobile Robot

Simulation,” Int. J. of Adv. Rob. Sys., vol. 1, no. 1, p. 5, 2004.
[32] T. Erez, et al., “Simulation tools for model-based robotics: Comparison

of Bullet, Havok, MuJoCo, ODE and PhysX,” in Int. Conf. Rob. Aut.,
2015, pp. 4397–4404.

[33] X. Gu, et al., “Design and Dynamics Simulation of a Triphibious Robot
in Webots Environment,” in Int. Conf. on Mech. and Aut., 2021, pp.
1268–1273.

[34] E. Rohmer, et al., “V-REP: A versatile and scalable robot simulation
framework,” in Int. Conf. Int. Rob. Syst., 2013, pp. 1321–1326.

[35] P. Udvardy, et al., “Simulation of obstacle avoidance of an UAV,” in
New Tr. in Av.Dev., 2020, pp. 245–249.

[36] E. Todorov, et al., “MuJoCo: A physics engine for model-based control,”
in Int. Conf. Int. Rob. Syst., 2012, pp. 5026–5033.

[37] S. Shah, et al., “AirSim: High-Fidelity Visual and Physical Simulation
for Autonomous Vehicles,” in Fie. and Ser. Rob., 2018, pp. 621–635.

[38] J. Saunders, et al., “Parallel Reinforcement Learning Simulation for
Visual Quadrotor Navigation,” in Int. Conf. Rob. Aut., 2023, pp. 1357–
1363.

[39] Y. Song, et al., “Flightmare: A Flexible Quadrotor Simulator,” in Conf.
Robot Learning. PMLR, 2021, pp. 1147–1157.

[40] Y. Song, et al., “Reaching the limit in autonomous racing: Optimal
control versus reinforcement learning,” Sci. Rob., vol. 8, no. 82, 2023.

[41] W. Guerra, et al., “FlightGoggles: Photorealistic Sensor Simulation for
Perception-driven Robotics using Photogrammetry and Virtual Reality,”
in Int. Conf. Int. Rob. Syst., 2019, pp. 6941–6948.

[42] J. Panerati, et al., “Learning to Fly—a Gym Environment with PyBullet
Physics for Reinforcement Learning of Multi-agent Quadcopter Con-
trol,” in Int. Conf. Int. Rob. Syst., 2021, pp. 7512–7519.

[43] E. Coumans et al., “PyBullet, a python module for physics simulation
for games, robotics and machine learning,” 2016. [Online]. Available:
https://pybullet.org/

[44] M. Towers, et al., “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[45] A. Raffin, et al., “Stable-Baselines3: Reliable Reinforcement Learning
Implementations,” J. of Mach. Lear. Res., vol. 22, no. 1, 2021.

[46] G. Li, et al., “RotorTM: A Flexible Simulator for Aerial Transportation
and Manipulation,” IEEE Trans. Rob., pp. 1–20, 2023.

[47] MATLAB, “UAV Toolbox.” [Online]. Available: https://www.
mathworks.com/products/uav.html

[48] N. Horri et al., “A Tutorial and Review on Flight Control Co-Simulation
Using Matlab/Simulink and Flight Simulators,” Automation, vol. 3, no. 3,
pp. 486–510, 2022.

[49] Z. Yuan, et al., “Safe-Control-Gym: A Unified Benchmark Suite for
Safe Learning-Based Control and Reinforcement Learning in Robotics,”
Robot. Autom. Lett., vol. 7, no. 4, pp. 11 142–11 149, 2022.

[50] F. Kong, et al., “MARSIM: A Light-Weight Point-Realistic Simulator
for LiDAR-Based UAVs,” Robot. Autom. Lett., vol. 8, no. 5, pp. 2954–
2961, 2023.

[51] Z. Huang, et al., “QuadSwarm: A Modular Multi-Quadrotor Simu-
lator for Deep Reinforcement Learning with Direct Thrust Control,”
arXiv:2306.09537, 2023.

[52] E. Bøhn, et al., “Deep Reinforcement Learning Attitude Control of
Fixed-Wing UAVs Using Proximal Policy optimization,” in Int. Conf.
on Unm. Air. Sys., 2019, pp. 523–533.

[53] A. Keipour, et al., “UAS Simulator for Modeling, Analysis and Control
in Free Flight and Physical Interaction,” in AIAA SCI. For., 2023, p.
1279.

[54] E. Cuniato, et al., “A hardware-in-the-loop simulator for physical
human-aerial manipulator cooperation,” in Int. Conf. on Adv. Rob., 2021,
pp. 830–835.

[55] S. Folk, et al., “RotorPy: A Python-based Multirotor Simulator with
Aerodynamics for Education and Research,” arXiv:2306.04485, 2023.

[56] J. Li, et al., “Potato: A Data-Oriented Programming 3D Simulator for
Large-Scale Heterogeneous Swarm Robotics,” arXiv:2308.12698, 2023.

[57] P. Foehn, et al., “Agilicious: Open-source and open-hardware agile
quadrotor for vision-based flight,” Sci. Rob., vol. 7, no. 67, 2022.

[58] T. Baca, et al., “The MRS UAV System: Pushing the Frontiers of
Reproducible Research, Real-world Deployment, and Education with
Autonomous Unmanned Aerial Vehicles,” J. of Int. & Rob. Sys., vol.
102, no. 1, p. 26, 2021.

[59] L. Pichierri, et al., “CrazyChoir: Flying Swarms of Crazyflie Quadrotors
in ROS 2,” Robot. Autom. Lett., vol. 8, no. 8, pp. 4713–4720, 2023.

[60] J. A. Preiss, et al., “Crazyswarm: A large nano-quadcopter swarm,” in
Int. Conf. Rob. Aut., 2017, pp. 3299–3304.

[61] M. Fernandez-Cortizas, et al., “Aerostack2: A Software Framework for
Developing Multi-robot Aerial Systems,” arXiv:2303.18237, 2023.

[62] “X-Plane.” [Online]. Available: https://www.x-plane.com/
[63] I. Navarro, et al., “SoRTS: Learned Tree Search for Long Horizon Social

Robot Navigation,” arXiv:2309.13144, 2023.
[64] D. J. Richter et al., “QPlane: An Open-Source Reinforcement Learning

Toolkit for Autonomous Fixed Wing Aircraft Simulation,” in ACM Mult.
Syst. Conf., ser. MMSys ’21, 2021, pp. 261–266.

[65] A. R. Perry, “The FlightGear Flight Simulator,” in USENIX An. Tech.
Conf., vol. 686, 2004, pp. 1–12.

[66] Y. A. Prabowo, et al., “Hardware in-the-loop simulation for visual
servoing of fixed wing UAV,” in Int. Conf. on El. Eng. and Infor., 2015,
pp. 247–252.

[67] “RealFlight.” [Online]. Available: https://www.realflight.com/
[68] S. J. Carlson et al., “The MiniHawk-VTOL: Design, Modeling, and

Experiments of a Rapidly-prototyped Tiltrotor UAV,” in Int. Conf. on
Unm. Air. Sys., 2021, pp. 777–786.

http://docs.px4.io/main/en/sim_gazebo_classic/
http://docs.px4.io/main/en/sim_gazebo_classic/
https://gazebosim.org/
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://pybullet.org/
https://zenodo.org/record/8127025
https://www.mathworks.com/products/uav.html
https://www.mathworks.com/products/uav.html
https://www.x-plane.com/
https://www.realflight.com/

	Introduction
	Multirotors
	Fixed-wing
	Aerial manipulators

	UAV Simulators
	Universal simulators
	Domain specific simulators
	Simulators part of flight stacks
	Flight simulators

	UAV Simulator Comparison
	Discussion
	Conclusions
	References

