
c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Software-in-the-loop simulation for improving
flight control system design: a quadrotor case study

Giuseppe Silano, Pasquale Oppido and Luigi Iannelli

Abstract— Simulation is a standard approach used for de-
signing complex systems like the flight controller in multi-rotor
vehicles. In this paper we illustrate how the software-in-the-loop
(SIL) methodology allows to detect and manage instabilities of
a quadrotor control system that otherwise might not arise when
considering only Matlab/Simulink simulations.

The use of the SIL technique allows to understand the be-
havior of the flight control system by comparing and evaluating
different scenarios, with a details level quite close to reality. At
the same time, it is possible to discover issues that a model-in-
the-loop (MIL) simulation does not necessarily detect, even if
carried out through a multi-physics co-simulation approach.

The paper aims to give the reader a practical and concrete
evidence of such considerations through the case study of a
micro quadrotor.

I. INTRODUCTION

Aerial robotics is a fast-growing field of robotics and in
particular multi-rotor aircraft, like quadrotors, are rapidly
increasing in popularity also out of the scientific community.
Thanks to their hovering and vertical take-off and landing
(VTOL) capabilities and the capacity to perform tasks with
complete autonomy, they are now a standard platform for
numerous military and civilian applications, e.g., inspections
of power lines, bridges and pipelines [1], soil and field
analysis [2], crop monitoring [3].

However, designing autopilots for UAVs (Unmanned
Aerial Vehicles) is a challenging task, which involves multi-
ple interconnected aspects. Numerous researchers are cur-
rently addressing the problem of designing autonomous
guidance [4] and navigation systems [5] as well as control
systems for multi-rotor vehicles [6]. Therefore, having tools
able to show what it happens when some new applications
are going to be developed in unknown or critical situations
is more and more important.

Simulation is one of such helpful tools, widely used
in robotics, enabling not only to verify the components
integration and to evaluate their behavior under different
circumstances but also to simplify the development and
validation processes. Furthermore, simulation is cheaper than
experiments with real robots, in terms of time and human
resources: it makes possible simulating multiple robots when
the hardware may not be available and getting a better under-
standing of implemented methods under various conditions.

Different solutions, typically based on dedicated robotic
simulators such as Gazebo [7], V-REP [8], AirSim [9] are

Giuseppe Silano, Pasquale Oppido and Luigi Iannelli are with the
Department of Engineering, University of Sannio in Benevento, Piazza
Roma, 21 - 82100 Benevento, Italy, emails: {giuseppe.silano,
pasquale.oppido, luigi.iannelli}@unisannio.it

available to this purpose. They employ recent advances in
computation and computer graphics in order to simulate
physical phenomena (gravity, magnetism, atmospheric con-
ditions) and perception (e.g., providing sensor models) in
such a way that the environment realistically reflects the
actual world. Definitely, it comes out that software platforms
able to test algorithms for UAVs moving in a simulated
3D environment are becoming an indispensable part of the
design phase.

The aim of this paper is to show the role and the effective-
ness of robotics simulators in flight control system design for
multi-rotor aircraft (a quadrotor, in our case). In particular
it will be explained, by using a rather complex example,
how the software-in-the-loop (SIL) simulation allows to
detect and to manage instabilities that otherwise might not
arise when considering only Matlab/Simulink simulations.
On the other hand such instabilities may not be just related
to the complexity, accuracy or detailed modeling of the
simulated plant, but rather they may appear due to peculiar
features of the final realization and, in particular, the software
that will implement the control strategy. Indeed, aspects
like synchronization, overflow, tasks communication, are all
managed by libraries or tools available during the control
design phase and yet they are specific of the final code
implementation [10]. From such perspective, SIL simulation
has to be considered a valuable tool for discovering, in an
earlier phase of the usual V-model process, those issues that
a model-in-the-loop (MIL) simulation does not necessarily
detect. At the same time, a SIL simulation, obtained by
using realistic and detailed simulators, gives the opportunity
of validating in an easy way the effects of modifying the
control strategy for complex missions. That represents quite
often the easiest way to tune the flight control system and
to check its validity.

Although advantages of such methodology are reasonable
for the scientific community from a very general viewpoint,
in the authors’ opinion an illustrative case study can be of
interest in particular if declined to the specific application,
and when the code is provided as open-source [11] for
scientific and educational activities.

II. MOTIVATING CASE STUDY

The case study here considered is the stabilizing controller
discussed in [12] that in our case has been designed by
considering the Parrot Bebop 2 quadrotor (see Fig. 1).

A detailed aircraft model was used in a twofold way:
firstly, for tuning the controller gains (obtained as the solu-
tion of an optimization problem), and then for validating the

ψ

ϕ
θ

ez

ex

eyOABC

Ω1
Ω2

Ω4
Ω3

Z

X
Y

OFI

Fig. 1. Bebop in the body-frame (OABC) and the fixed-frame (OFI)
reference systems.

flight control system by comparing MIL simulation results
(the flight control system implemented as a Simulink model)
with those obtained through SIL simulation (the flight control
system implemented as an executable object code) [10].

A. Dynamical model

The design of a high performance attitude and position
controller requires often an accurate model of the system.
We here recall the commonly used dynamical model of a
quadrotor [13] and, by following usual approaches, we intro-
duce two orthonormal frames: the fixed-frame OFI (where FI
stands for Fixed Inertial), also called inertial (or reference)
frame, and the body-frame OABC (where ABC stands for
Aircraft Body Center) that is fixed in the aircraft center of
mass and is oriented according to the vehicle orientation
(attitude), see Fig. 1. The translational dynamic equations of
the vehicle can be expressed in the inertial frame as follows:

mξ̈ =−mgEz +uT R(ϕ,θ ,ψ)Ez, (1)

where g denotes the gravity acceleration, m the mass, uT the
total thrust produced by the rotors, ξ =

(
x y z

)> the drone
position expressed in the inertial frame, Ez =

(
0 0 1

)>
is the unit vector along the Z-axis, while R(ϕ,θ ,ψ) is the
rotation matrix from the body to the inertial frame and it
depends on the attitude η =

(
ϕ θ ψ

)> (i.e., Euler angles
roll, pitch and yaw, respectively) that describes the body-
frame orientation according to the ZYX convention [13].
Conversely, the rotational dynamics can be expressed as

Iω̇B =−ωB× IωB + τ, (2)

where ‘×’ denotes the vector product, ωB =
(
ωx ωy ωz

)>
is the vector of the angular velocity expressed in the body-
frame, I = diag(Ix, Iy, Iz) is the inertia matrix of the vehicle
w.r.t. its principal axis, and τ =

(
uϕ uθ uψ

)> is the
control torque vector obtained by actuating the rotors speeds
according to the rotors configuration and the vehicle shape.

At low speeds and around the hovering state the simplified
dynamic model consists of six second order differential equa-
tions obtained from balancing forces and momenta acting
on the drone, where c• and s• denote cos(•) and sin(•)

TABLE I
PARROT BEBOP 2 PARAMETERS’ VALUES.

Sym. Value Unit
Total quadrotor mass m 0.5 kg
Body inertia along x-axis Ix 0.00389 kgm2

Body inertia along y-axis Iy 0.00389 kgm2

Body inertia along z-axis Iz 0.0078 kgm2

Time motor constant Tm 0.0125 s
Thrust motor constant b f 8.54858×10−6 kgm
Motor moment constant bm 0.016 m
Distance of propellers l 0.12905 m
Maximum propellers speed Ωmax 1475 rads−1

functions, respectively:

Ixϕ̈ =θ̇ ψ̇ (Iy− Iz)+uϕ (3a)

Iyθ̈ =ϕ̇ψ̇ (Iz− Ix)+uθ (3b)

Izψ̈ =θ̇ ϕ̇ (Ix− Iy)+uψ , (3c)

mẍ =uT
(
cϕ sθ cψ + sϕ sψ

)
(4a)

mÿ =uT
(
cϕ sθ sψ − sϕ cψ

)
(4b)

mz̈ =uT cθ cϕ −mg. (4c)

Equations (3)–(4) represent the nominal model used for
designing the control law in [12] and here described in
Sect. II-B. However a more detailed model should be con-
sidered when simulation has to be employed as part of the
control design process. Thus we introduced further details for
catching more realistic behaviors writing the model inputs as

uT = b f
(
Ω

2
1 +Ω

2
2 +Ω

2
3 +Ω

2
4
)
, (5)

and

τ =

uϕ

uθ

uψ

=
b f√

2

 l
(
−Ω2

1−Ω2
2 +Ω2

3 +Ω2
4
)

l
(
−Ω2

1 +Ω2
2 +Ω2

3−Ω2
4
)

√
2bm

(
−Ω2

1 +Ω2
2−Ω2

3 +Ω2
4
)
 , (6)

where Ωi, i ∈ {1,2,3,4}, are the actual rotors angular
velocities expressed in rads−1, l is the distance from the
propellers to the center of mass, while b f and bm are the
thrust and drag factors, respectively. Further details can be
found in [4] or [13].

We also modeled the actuators dynamics

TmΩ̇i +Ωi = Ω
ref
i , (7)

where Tm is the motor time constant (assumed the same
for all motors) and Ωref

i is the commanded motor velocity,
considering physical constraints acting on the propellers
velocities modeled in the simulator. Table I reports the Parrot
Bebop 2 drone parameters’ values.

B. Flight control system

With the aim of illustrating a control design methodology
exploiting the SIL simulation, we started by considering a
common cascaded control architecture. Figure 2 describes
the overall system. The position controller (the outer loop
controller) uses the measured drone position ξd to compute
the thrust (uT) and attitude (ϕr and θr) that should have
the drone in order to reach the desired position ξr with
the desired heading orientation (yaw angle) ψr. The attitude

TABLE II
PHYSICAL CONSTRAINTS OF THE PARROT BEBOP 2 QUADROTOR.

Sym. Unit Output limit
Roll angle ϕr deg [−30, 30]
Pitch angle θr deg [−30, 30]
Thrust command uT N [0, 18.6]

controller (the inner loop controller) uses the measured drone
attitude ηd to compute the model inputs uϕ , uθ and uψ that
should be actuated in order to achieve the desired attitude
(ϕr, θr, ψr). The control mixer inverts eqs. (5) and (6) thus
obtaining the commanded motor velocities Ωref

i in eq. (7). We
here consider the control strategy proposed in [12] (authors
refer to it as nonlinear internal model control) that we recall
below for the sake of completeness. The drone position along
the X-, Y - and Z-axis is controlled through the virtual inputs
ux, uy and uz

ux ,
(
cψd sθd cϕd + sψd sϕd

)
uT (8a)

uy ,
(
sψd sθd cϕd − cψd sϕd

)
uT (8b)

uz ,uT cθd cϕd −mg, (8c)

(see eqs. (4)) that are given by the control laws

uq =

(
αq

µq
ėq−

βq

µ2
q

eq

)
m, q ∈ {x,y,z}, (9)

where µq > 0, βq < 0 and αq = 1− βq > 0 are controller
parameters to be appropriately chosen and eq are the position
and orientation components of the tracking errors.

The outer controller uses ux and uy to compute the desired
roll and pitch angles

ϕr = sin−1
(

uxsψr −uycψr

uT

)
, θr = sin−1

(
uxcψr +uysψr

uT cϕr

)
,

and the total thrust uT given by uT =
√

u2
x +u2

y +(uz +mg)2.
Conversely, the inner controller determines the inputs uϕ ,
uθ and uψ to regulate the drone attitude according to the
following control laws:

uϕ = Ix

(
αϕ

µϕ

ėϕ −
βϕ

µ2
ϕ

eϕ −
eθ eψ

µθ µψ

(
Iy− Iz

Ix

))
(10a)

uθ = Iy

(
αθ

µθ

ėθ −
βθ

µ2
θ

eθ −
eϕ eψ

µϕ µψ

(
Iz− Ix

Iy

))
(10b)

uψ = Iz

(
αψ

µψ

ėψ −
βψ

µ2
ψ

eψ −
eϕ eθ

µϕ µθ

(
Ix− Iy

Iz

))
. (10c)

Outer loop
controller

Inner loop
controller

Control
Mixer

Aircraft
+

Motors

ξr

ψr

ψr
ξd

uT

ϕr

θr

uϕ , uθ

uψ

ηd

Ωref
1 , Ωref

2

Ωref
3 , Ωref

4

ξd

ηd

Fig. 2. The control scheme. Subscript d indicates the drone variables and
r indicates references to controllers.

TABLE III
CONTROLLER PARAMETER VALUES.

Sym. Value Sym. Value
µx 0.08 βx −26.4259
µy 1 βy −26.3627
µz 1 βz −27.2277
µϕ 0.09 βϕ −14.8134
µθ 0.26 βθ −16.1561
µψ 0.05 βψ −14.3431

Outputs of the outer loop controller are subject to constraints
(physical or determined by the specific control strategy) that
for the considered application are reported in Table II.

Note that the control strategy defined by (9)–(10) guar-
antees some local stability properties when applied to the
system (3)–(4) (see [12, Theorem 1]). Thus it is of interest
to understand if such stability properties are preserved when
applying the described control architecture to the actual
hardware platform that, on the other hand, exhibits more
complex behaviors due to some neglected aspects like phys-
ical constraints, the digital controller implementation, the
actuators and sensors dynamics. To this aim, rather than
implementing the control laws on the hardware platform, we
can proceed through a SIL simulation approach.

However, first it is required to choose controller param-
eters’ values and that can be achieved through a MIL sim-
ulation approach. The Matlab/Simulink platform was used
to minimize in a numerical way (through the fmincon
function of the MathWorks Optimization ToolboxTM) the
integral of the squared error (ISE)

ISE(µk,βk),
1

t f − ti

∫ t f

ti

(
‖eη(t)‖2 +‖eξ (t)‖2)dt, (11)

w.r.t. the control parameters µk, βk, k ∈ {η ,ξ} with
η = {ϕ, θ , ψ} and ξ = {x, y, z}. Differently from [12],
here a more accurate model takes into account also motor
dynamics, saturation constraints and controller discretization,
by considering also βk gains as further decision variables.
The optimal values of the gains are reported in Table III.

III. NUMERICAL EXPERIMENTS

A. Controller implementation

When moving from the control design based on the nomi-
nal model (Sects. II-A and II-B) to the actual implementation,
several issues should be addressed. First of all we should
consider that the proposed control architecture is based on
control loops that, at least for the position controller, are
nothing but standard PD (proportional-derivative) controllers.
That are standard solution in the literature in quadorotor con-
trollers design [14]. For such class of controllers, a classical
way of dealing with the time derivative of the control error
is to differentiate only the output signal that, in our case,
is assumed to be directly available as a state variable of
the system (of course, in a possible hardware deployment,
a state estimator has to be introduced). A second aspect to
consider towards the real implementation is the controller
discretization. As a common rule in cascade structures, the
inner loop needs to be regulated at a rate faster than the outer

0 10 20 30 40

−1

0

1

Time [s]

Po
si

tio
n

[m
]

xr,yr,zr
xd
yd
zd

Fig. 3. Drone position: numerical experiments in Matlab/Simulink.

loop. In our case, the attitude controller runs at 200Hz while
the position controller runs at 100Hz. Finally, the controller
has to clip desired rotor velocities so that 0≤Ωref

i ≤Ωmax.

B. SIL simulation

The SIL simulation has been carried out by the ROS
(Robot Operating System) middleware that gives the possi-
bility to write the controller implementation in C/C++ lan-
guage facilitating rapid prototyping and the reuse of software.
Regarding the robotic simulator, we used Gazebo and the
ROS packages RotorS [15], [16] that both interface to ROS
allowing to simulate controlled multi-rotor vehicles by taking
into account quite detailed physical models that consider
secondary effects like rolling moment and/or disturbances
due to the drag of the rotor blades, etc.. Shortly Gazebo
simulates behaviors that are more realistic than Simulink that,
instead, has been used to simulate only the model described
in Sect. II-A.

The SIL simulation provides the flight control system of
Sect. II-B, together with the further modifications described
in Sect. III-A, written in C++ code and implemented as a
ROS node running on the same ROS network. Gazebo and
the controller node operate at the same frequency of 1kHz
(integration step time of 1ms).

C. Results

MIL simulations obtained in Matlab/Simulink show an
acceptable behavior of the controlled quadrotor.Figure 3
illustrates how the system performs and how the vehicle
is capable of tracking the reference trajectory along the Z-
axis as like as in the XY plane. In Fig. 4 the total thrust
uT computed by the controller is reported and it is evident
that it satisfies constraints of Table II. In addition, also
desired roll ϕr and pitch θr satisfy those constraints, so as
depicted in Fig. 5. It appears that the flight control system
(specifically, the outer loop) requests angles profiles that
show a strong oscillatory behavior (in particular the pitch
angle). That is probably due to the high value gains obtained
from the tuning process. On the other hand those gains
guarantee good tracking performances and, at the same time,
pitch oscillations are damped and still within the admissible
ranges. Moving to the SIL simulations, they exhibit strong
instabilities and the quadrotor crashes to the soil (the video

0 10 20 30 40
4.5

5

5.5

6

6.5

Time [s]

T
hr

us
t

[N
]

Fig. 4. The total thrust uT requested by the controller: numerical
experiments in Matlab/Simulink.

0 10 20 30 40

−10

0

10

Time [s]

A
ng

le
[◦

]

Fig. 5. Reference angles ϕr (blue, solid) and θr (red, dashed) computed
by the outer loop controller: numerical experiments in Matlab/Simulink.

is available at http://tiny.cc/aags9y), thus showing
how the software implementation can affect the system
performances.

It is not easy to understand what is going wrong with SIL
simulations even because the quadrotor model is different
(and more realistic) w.r.t. the Simulink model. By looking at
first tenths of second of simulations it comes out that the uz
control signal assumes negative values much below −mg =
−4.9N, see Fig. 6. That is an important issue since uz <
−mg⇒ uz +mg < 0 but, from (8c), that means uz +mg =
uT cθd cϕd < 0. Of course, due to physical constraints on uT
and roll and pitch angles, it is not possible to apply a thrust
that gives the desired uz and such specific situation is well
known in literature to bring the system to instability [17].
It happened that, differently from the Matlab/Simulink plat-
form, the SIL approach allowed to understand that critical
conditions arise due to physical constraints that have not
been considered in the flight control design. It is important
to highlight that the implementation in Matlab/Simulink is
not oversimplified but it happens that the closed loop system
is such that neglected dynamics and phenomena (both of the
model and the controller) determine a critical behavior.

To ensure the operation of the flight control system under
constraints of Table II, the approach proposed in [17] has
been applied by imposing the following inequalities

|ux| ≤ mUx, |uy| ≤ mUy, |uz| ≤ mUz, (12)

http://tiny.cc/aags9y

0 0.1 0.2 0.3 0.4
−10

−5

0

Time [s]

Fo
rc

e
[N

]

Fig. 6. Signal uz: numerical experiments in Gazebo.

where Ux, Uy and Uz are suitable constants (see Table IV)
so that

Uz < g (13a)

U2
x +U2

y ≤ (−Uz +g)2 tan2
εc (13b)√

U2
x +U2

y +(Uz +g)2 ≤ uTmax , (13c)

where εc is the maximum absolute value of the reference
angles that has been chosen equal to 18◦ for getting an
adequate “safety margin”. According to [17, eq. (40)], now
the position controller is implemented by replacing control
laws in eqs. (9) with the following nested control law

uq =Uqσ

(
Kq1

Uq
ėq +

1
2

σ

(
Kq2

Uq
ėq +

Kq1Kq2

Uq
eq

))
, (14)

where Kq1 ,Kq2 ≥ 0 are controller parameters and σ is the sat-
uration function σ(s) = sgn(s)min(|s|,1). It is not difficulty
to show that the following choice of gains

Kq1 =
1
µq

, Kq2 =−
2βq

µq
, (15)

corresponds to the same PD gains of eqs. (9) when σ

functions in (14) do not saturate.
Figures 7 and 8 show Simulink results that consider

the new nested control laws in the outer loop. Oscilla-
tions amplitude on the reference angles decreased but the
quadrotor still tracks the reference trajectory (although a
higher position error is now present on the altitude). When
running the SIL simulation with the new nested control outer
loop, instabilities do not appear anymore, but the control
performances in tracking the same trajectory is very poor:
in particular the quadrotor shows an unpredictable behavior
regarding the altitude (the video is available at http:
//tiny.cc/4cgs9y) that might be due to the coupling
effects with xy dynamics. Indeed, also attitude angles change

TABLE IV
THE VIRTUAL INPUTS BOUND LIMITS.

Sym. Value Unit
Ux 1.181 ms−2

Uy 1.181 ms−2

Uz 4.667 ms−2

0 10 20 30 40

−1

0

1

Time [s]

Po
si

tio
n

[m
]

xr,yr,zr
xd
yd
zd

Fig. 7. Drone position obtained by applying the nested control laws (14):
numerical experiments in Matlab/Simulink.

0 10 20 30 40
−4

−2

0

2

4

Time [s]

A
ng

le
[◦

]

Fig. 8. Reference angles ϕr (blue, solid) and θr (red, dashed) obtained
by applying the nested control laws (14): numerical experiments in Mat-
lab/Simulink.

even though XY references have not been modified yet (see
Fig. 9). Such coupling effects are probably caused by the
asymmetric positioning of the rotors w.r.t. the principal axis
(Gazebo, differently from Simulink, considers such further
non ideal feature, as well). Therefore, in order to reduce the
attitude controller action that might be too high under such
perturbations, the corresponding gains have been retuned by
modifying only the inner loop gains that now minimize the
cost function

J(µη ,βη) =
1

t f − ti

∫ t f

ti
‖eξ (t)‖2 +α‖uη(t)‖2dt (16)

where α is a weighting coefficient. Although Simulink
simulations show good performances, SIL simulations still
are not close to what MIL simulations predict. In particular,
the presence of spikes on the drone altitude (see Fig. 10) are
not acceptable for a real application (as clearly shown by the
video at http://tiny.cc/eggs9y).

Further investigations led us to understand that the naive
clipping of rotor velocities might give rise to such strange
behavior so as explained in [18], [19]. Once again, the use of
SIL methodologies allowed to observe instabilities and issues
that did not appear in classical Matlab/Simulink simulations.
A smarter computation of the commanded rotor velocities
has been applied for compensating such subtle effects. How-
ever, rather than using elaborated and complex algorithms,

http://tiny.cc/4cgs9y
http://tiny.cc/4cgs9y
http://tiny.cc/eggs9y

0 10 20 30 40

−4

−2

0

2

4

Time [s]

A
ng

le
[◦

]
ϕd
θd
ψd

Fig. 9. Drone attitude when considering the nested control loops (14):
numerical experiments in Gazebo.

0 10 20 30 40
0

0.5

1

1.5

2

Time [s]

A
lti

tu
de

[m
]

Fig. 10. Spikes on the drone altitude: numerical experiments in Gazebo.

we decided to apply the simple Algorithm 1 (see http:
//tiny.cc/dnhy9y) that gives acceptable results. The
video available at http://tiny.cc/sugs9y illustrates
the final behavior obtained from a SIL simulation.

IV. CONCLUSIONS

In this paper it has been shown how the design and the de-
velopment of a control algorithm is affected by implementa-
tion issues. In particular, how the SIL simulation, here based
on a ROS/Gazebo architecture, can be employed to exhibit
behaviors of the overall system that in the Matlab/Simulink
platform were hidden. Most of the implementation aspects
related to the specific application have been presented and

Algorithm 1 Compensation of Rotors Speed Clipping

1: omMin←Ω1, omMax←Ω1, omFix← 0
2: for i := 2..4 do
3: if Ωi < omMin then omMin = Ωi

4: if Ωi > omMax then omMax = Ωi

5: if omMin < Ωmin then omFix = Ωmin−omMin
6: else
7: if omMax > Ωmax then omFix = Ωmax−omMax
8: for i := 1..4 do Ωi = Ωi +omFix
9: Clip computed Ωi

discussed thus showing the effectiveness and the relevance
of the SIL methodology by considering a concrete complex
application.

We published the software as open-source [11] with the
aim to share our result with other researchers that might use
the platform for testing their algorithms and understanding
how SIL methodologies can improve the controller design.

REFERENCES

[1] T. Özaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M.
Wozencraft, and T. Hood, “Autonomous Navigation and Mapping for
Inspection of Penstocks and Tunnels With MAVs,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1740–1747, 2017.

[2] C. Potena, R. Khanna, J. Nieto, R. Siegwart, D. Nardi, and A. Pretto,
“AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision
Farming,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1085–1092, 2019.

[3] D. Anthony, S. Elbaum, A. Lorenz, and C. Detweiler, “On crop
height estimation with UAVs,” in IEEE International conference on
Intelligent Robots and Systems, 2014, pp. 4805–4812.

[4] R. C. Leishman, J. C. Macdonald, R. W. Beard, and T. W. McLain,
“Quadrotors and Accelerometers: State Estimation with an Improved
Dynamic Model,” IEEE Control Systems Magazine, vol. 34, no. 1, pp.
28–41, 2014.

[5] E. Páll, L. Tamás, and L. Buşoniu, Vision-Based Quadcopter Naviga-
tion in Structured Environments. Springer International Publishing,
2015, pp. 265–290.

[6] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “A Novel Overactuated
Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experi-
mental Validation,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 2, pp. 540–556, 2015.

[7] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE International
Conference on Intelligent Robots and Systems, vol. 3, 2004, pp. 2149–
2154.

[8] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a Versatile
and Scalable Robot Simulation Framework,” in IEEE International
Conference on Intelligent Robots and Systems, 2013, pp. 1321–1326.

[9] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field
and Service Robotics, 2017.

[10] H. Shokry and M. Hinchey, “Model-Based Verification of Embedded
Software,” Computer, vol. 42, no. 4, pp. 53–59, 2009.

[11] G. Silano, “BebopS GitHub repository,” 2019. [Online]. Available:
https://github.com/gsilano/BebopS

[12] Y. Bouzid, H. Siguerdidjane, and Y. Bestaoui, “Nonlinear internal
model control applied to VTOL multi-rotors UAV,” Mechatronics,
vol. 47, pp. 49–66, 2017.

[13] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and
simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[14] T. N. Dief and S. Yoshida, “Review: Modeling and Classical Con-
troller Of Quad-rotor,” International Journal of Computer Science and
Information Technology & Security, vol. 5, no. 4, pp. 314–319, 2015.

[15] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors – A
Modular Gazebo MAV Simulator Framework,” in Robot Operating
System (ROS): The Complete Reference (Volume 1), K. Anis, Ed.
Springer International Publishing, 2016, pp. 595–625.

[16] B. Arbanas, A. Ivanovic, M. Car, M. Orsag, T. Petrovic, and S. Bog-
dan, “Decentralized planning and control for UAV–UGV cooperative
teams,” Autonomous Robots, vol. 42, no. 8, pp. 1601–1618, 2018.

[17] N. T. Nguyen, I. Prodan, and L. Lefèvre, “Flat trajectory design
and tracking with saturation guarantees: a nano-drone application,”
International Journal of Control, pp. 1–14, 2018.

[18] M. Ramp and E. Papadopoulos, “On Negotiating Aggressive Quadro-
tor Attitude Tracking Maneuvers Under Actuator Constraints,” in 2018
26th Mediterranean Conference on Control and Automation. IEEE,
2018, pp. 759–764.

[19] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential Flatness
of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking
of High-Speed Trajectories,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 620–626, 2018.

http://tiny.cc/dnhy9y
http://tiny.cc/dnhy9y
http://tiny.cc/sugs9y
https://github.com/gsilano/BebopS

	Introduction
	Motivating case study
	Dynamical model
	Flight control system

	Numerical experiments
	Controller implementation
	SIL simulation
	Results

	Conclusions
	References

