
CrazyS: a software-in-the-loop simulation
platform for the Crazyflie 2.0 nano-quadcopter

Giuseppe Silano?? and Luigi Iannelli

Department of Engineering
University of Sannio in Benevento

Piazza Roma, 21 - 82100 Benevento, Italy
{giuseppe.silano,luigi.iannelli}@unisannio.it

Abstract. This chapter proposes a typical use case dealing with the physical
simulation of autonomous robots (specifically, quadrotors) and their interfacing
through ROS (Robot Operating System). In particular, we propose CrazyS, an
extension of the ROS package RotorS, aimed to modeling, developing and inte-
grating the Crazyflie 2.0 nano-quadcopter in the physics based simulation envi-
ronment Gazebo. Such simulation platform allows to understand quickly the be-
havior of the flight control system by comparing and evaluating different indoor
and outdoor scenarios, with a details level quite close to reality. The proposed
extension, running on Kinetic Kame ROS version but fully compatible with the
Indigo Igloo one, expands the RotorS capabilities by considering the Crazyflie
2.0 physical model, its flight control system and the Crazyflie’s on-board IMU,
as well. A simple case study has been considered in order to show how the pack-
age works and how the dynamical model interacts with the control architecture
of the quadcopter.
The contribution can be also considered as a reference guide for expanding the
RotorS functionalities in the UAVs field, by facilitating the integration of new
aircrafts. We released the software as open-source code, thus making it available
for scientific and educational activities.

Keywords: software-in-the-loop simulation, virtual reality, UAV, Crazyflie 2.0, ROS,
Gazebo, RotorS, Robotics System Toolbox, Continuous Integration

1 Introduction

Unmanned Aerial Vehicles (UAVs), although originally designed and developed for
defense and military purposes (e.g., aerial attacks or military air covering), during recent
years gained an increasing interest and attention related to the civilian use. Nowadays,
UAVs are employed for several tasks and services like surveying and mapping [1],
for rescue operations in disasters [2,3], for spatial information acquisition, buildings
inspection [4,5], data collection from inaccessible areas, geophysics exploration [6,7],
traffic monitoring [8], animal protection [9], agricultural crops and monitoring [10],
manipulation and transportation or navigation purposes [11,12].

?? Corresponding author.

c© 2020 Springer International Publishing. Personal use of this material (preprint version) is permitted. Permission from Springer must
be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. The published version is available at https://doi.org/10.1007/978-3-030-20190-6_4

2 Giuseppe Silano et al.

Fig. 1. The Crazyflie 2.0 nano-quadcopter. Retrieved from [26]. Copyright 2018 by Bitcraze AB.

Many existing algorithms for the autonomous control [13,14] and navigation [15,16]
are provided in the literature, but it is particularly difficult to make the UAVs able to
work autonomously in constrained and unknown environments or also indoor. Thus, it
follows the need for tools that allow to understand what it happens when some new
applications are going to be developed in unknown or critical situations. Simulation is
one of such helpful tools, widely used in robotics [17,18,19], and whose main bene-
fits are costs and time savings, enabling not only to create various scenarios, but also
to study and to carry out complex missions that might be time consuming and risky
in the real world. Finally, bugs and mistakes in simulation cost nothing: it is possible
to crash a vehicle virtually several times and thereby getting a better understanding of
implemented methods under various conditions. To this aim, simulation environments
are very important for fast prototyping and educational purposes. Indeed, they are able
to manage the complexity and heterogeneity of the hardware and the applications, to
promote the integration of new technologies, to simplify the software design, to hide
the complexity of low-level communication [20].

Different solutions, typically based on external robotic simulators such as Gazebo
[21], V-REP [22], Webots [23], AirSim [24], MORSE [25], are available to this purpose.
They employ recent advances in computation and graphics (e.g., the AirSim photoreal-
istic environment [15]) in order to simulate physical phenomena (gravity, magnetism,
atmospheric conditions) and perception (e.g., providing sensor models) in such a way
that the environment realistically reflects the actual world. Definitely, it comes out that
complete software platforms able to test control algorithms for UAVs in a simulated 3D
environment are becoming more and more important.

In this tutorial chapter, the Micro Aerial Vehicles (MAVs) simulation framework
RotorS1 [28] has been employed as a base for proposing CrazyS, a software package
for modeling, developing and integrating the dynamics and the control architecture of
the nano-quadcopter Crazyflie 2.0 [26] (Fig. 1) in the Gazebo simulator.

Our work may be considered the answer to impelling needs of many researchers
working on Crazyflie that ask for a simulator specific for such nano-quadrotor platform,
as clearly stated in [29, Sect. 9.5]. At the same time, the chapter can be seen as a

1 Together with Hector Quadrotor [27], RotorS is among the most used platforms for simulating
a multi-rotor in Gazebo through ROS middleware.

CrazyS: a software-in-the-loop simulation platform 3

reference guide for expanding functionalities of RotorS and facilitating the integration
of new vehicles equipped with both on-board sensors and control systems. In addition,
the contribution aims to highlight how the development of control strategies may be
facilitated allowing performance evaluation in a scenario quite close to reality, thanks to
software-in-the-loop (SITL) simulation methodologies (see [30] for a general overview
and [31,32] for mechatronics and UAV applications).

The chosen aircraft, the Crazyflie 2.0, is available on the market at a price of less
than $200 and it is ideal for many research areas (e.g., large swarm [33], tethered
flight [34], path planning [35], mixed reality [36], education [37], disturbances rejec-
tion [38], etc.). The source code and the hardware are open, making it possible to go
through any part of the system for complete control and full flexibility. New hardware
and sensors can be linked through the versatile expansion ports, enabling the addition
of the latest sensors. The small size and light weight reduce the need for safety equip-
ment and increase the productivity. For all such reasons, it appears valuable to have a
detailed flexible simulator of the Crazyflie dynamic behavior, with the possibility of
validating in an easy way the effects of modifying the control architecture for achieving
complex missions. We published the software as open-source [39] and at the same time
we opened a pull request [40] on RotorS repository with the aim to share our result
with other researchers who already use such tools and would like to use the platform.
However this chapter may help also those researchers, as control engineers, that are
familiar with UAV applications and software-in-the-loop simulation concepts but have
no experience with Gazebo and ROS.

The chapter is organized as follows. First, we briefly describe the quadcopter dy-
namical model and its flight control system, i.e., the architecture of the Crazyflie’s low
level control system. Then we model the on-board sensors, i.e., the Inertial Measure-
ment Unit (IMU MPU−9250 [41]) in order to develop a simulation platform as close as
possible to the real system. The entire procedure followed to bring datasheet values to
the simulation environment will be explained in detail by describing the mathematical
models and the related specifications. A further part will deal with the complementary
filter, i.e., the default Crazyflie state estimator, that has been implemented in CrazyS ac-
cording to the 2018.01.1 firmware release of the aircraft. After that we demonstrate how
to download and to use the CrazyS ROS package by providing step by step instructions
on how to proceed, by taking into account all software pre-requisites and dependencies
(see Sec. 3.1).

At this point we give a complete overview of the simulation environment. Starting
from a RotorS example, it is here described how CrazyS is structured for taking, as
command signals, the yaw rate ψ̇c, the pitch angle θc, the roll angle φc and the thrust
(actually, it denotes the desired rotors speed Ωc). Such commands correspond to the
inputs (references) of the on-board low level control in the Crazyflie 2.0 architecture
(see Sec. 3.2).

We show how to use the MathWorks® Robotics System Toolbox (RST) to build-up
a simulation platform in which control strategies are implemented through Simulink
schemes, i.e., the usual tools that control engineers are familiar with. The RST allows
to run Simulink schemes and to interface them to Gazebo that is in charge of simu-
lating the detailed aircraft physical model (Sec. 3.4.1). Then, control strategies will be

4 Giuseppe Silano et al.

ψ

φ

θ

ez

ex

ey

OABC

ω1

ω2
ω3

ω4

Z

X

Y

OFI

Fig. 2. Crazyflie in the body-frame (OABC) and the fixed-frame (OFI) reference system. Forces,
spin directions and the propellers angular velocity ωi of each rotor are depicted.

implemented in C++ code thus achieving a complete software-in-the-loop simulation
platform based on ROS and Gazebo (see Sec. 3.4.2). Finally, it will be described how to
configure a Continuous Integration (CI) infrastructure, by proposing a solution to link
the open-source platform TravisCI with the CrazyS repository. Advantages related to
the use of CI system when developing ROS packages are described in Sec. 3.5. Conclu-
sions close the chapter.

2 Crazyflie 2.0 nano-quadcopter

In this section, we describe the quadcopter physical model and how the simulator works.
Moreover the flight control system architecture is presented together with the on-board
sensors model. Contents of this section are inspired by our previous work [42] but are
here reviewed and explored in detail.

2.1 Dynamical model

The design of a suitable position controller for the quadcopter exploits an accurate
dynamical model. As the usual approach in the literature, we introduce two orthonormal
frames: the fixed-frame OFI (where FI stands for Fixed Inertial), also called inertial
(or reference) frame, and the body-frame OABC (where ABC stands for Aircraft Body
Center) that is fixed in the aircraft center of gravity and oriented along the aircraft main
directions (so defining its attitude), see Fig 2.

CrazyS: a software-in-the-loop simulation platform 5

According to [43], the forces (eqs. (1) and (2)) and the momentum (eqs. (3) and (4))
equations can be derived. Such model consists of twelve differential equations for the
system dynamics and four algebraic equations describing the relations between inputs
(forces and momenta) to the system and rotor velocities (eqs. (5) and (6)).ẋd

ẏd
żd

= RT (φd ,θd ,ψd)

ud
vd
wd

 , (1)

 u̇d
v̇d
ẇd

=

 0
0

Fz/m

−R(φd ,θd ,ψd)

0
0
g

−
pd

qd
rd

×
ud

vd
wd

 , (2)

ṗd
q̇d
ṙd

= J−1

Mx
My
Mz

−
pd

qd
rd

×J

pd
qd
rd

 , (3)

 φ̇d
θ̇d
ψ̇d

=

1 sφd tθd cφd tθd
0 cφd −sφd
0 sφd/cθd

cφd/cθd

pd
qd
rd

 , θd 6=
π

2
. (4)

The body-frame orientation is described through the Euler angles φd , θd and ψd ,
defined according to the ZY X convention [44] and it can be computed by consider-
ing that the rotation matrix R(φd ,θd ,ψd) allows to convert a vector expressed in the
fixed-frame to a vector expressed in the OABC body-frame. Thus, equation (1) relates
the linear velocities of the aircraft in the OABC frame, i.e.,

(
ud vd wd

)>, to the linear

velocities of the aircraft in the fixed frame, denoted by
(
ẋd ẏd żd

)>, through the inverse
matrix R(φd ,θd ,ψd)

−1 = R(φd ,θd ,ψd)
> . Whereas, by considering the time derivative

of R(φd ,θd ,ψd), the angular velocities of the aircraft in the OFI frame are related to the
corresponding velocities expressed in the body frame through eq. (4), where c•, s• and
t• denote cos(•), sin(•) and tan(•) functions, respectively.

Conversely, the remaining six equations (eqs. (2) and (3)) describe the UAV linear
and angular accelerations in the OABC frame. The diagonal matrix J has the inertia of the
body about the x, y and z-axis, respectively, while m is the total mass of the quadcopter
and g the gravitational constant.

The system inputs are reported in eqs. (5) and (6), where ω1, ω2, ω3 and ω4 repre-
sent the rotors angular velocities expressed in rads−1:

Fz =CT
(
ω

2
1 +ω

2
2 +ω

2
3 +ω

2
4
)
, (5)

M =

Mx
My
Mz

=
1√
2

 CT d
(
−ω2

1 −ω2
2 +ω2

3 +ω2
4
)

CT d
(
−ω2

1 +ω2
2 +ω2

3 −ω2
4
)

√
2CM

(
−ω2

1 +ω2
2 −ω2

3 +ω2
4
)
 . (6)

Finally, d is the distance of the propellers from the center of gravity while CT and
CM are the rotor thrust and rotor moment constants, respectively [28]. By increasing or
decreasing uniformly the propellers speed it causes an altitude change, while by varying

6 Giuseppe Silano et al.

Entries Sym. Value Unit
Motor constant CT 1.28192 ·10−8 kgmrad−2

Moment constant CM 5.964552 ·10−3 kgm2 rad−2

Rotor drag coefficient CD 8.06428 ·10−5 kgrad−1

Rolling moment coefficient CR 1 ·10−6 kgmrad−1

Table 1. Crazyflie 2.0 parameter values according to the MAV model employed in RotorS.

the speed ω1 and ω4 (or the pair ω2 and ω3 with the opposite effect) it causes the aircraft
to tilt about the y-axis, i.e., the pitch angle θd . Similarly, by varying the speeds ω1 and
ω2 (or the pair ω3 and ω4) it causes the aircraft to tilt about the x-axis, i.e., the roll angle
φd . Finally, the vector sum of the reaction moment produced by the speed of the pair
ω1 and ω3 and the reaction moment produced by the speed of ω2 and ω4 will cause the
quadcopter to spin about its z-axis, i.e., modifying the yaw angle ψd . Further details are
given in [43,45] while the parameter values of the Crazyflie have been taken from the
repository [46] by the same research group of [29].

According to the MAV model employed in RotorS [28], Table 1 summarizes the
drone parameter values reported in the crazyflie2.xacro file and used to describe
the aircraft dynamics with the corresponding entries.

2.2 Flight control system

In order to illustrate how to apply SITL testing methodologies to UAV design, we con-
sider a common architecture of a flight control system for controlling the position of a
quadrotor, so as illustrated in [43]. We have a “reference generator” that takes the po-
sition to reach (xr, yr and zr) and the desired yaw angle ψr and generates the command
signals (θc, φc, Ωc and ψ̇c) that are inputs for the on-board control architecture of the
Crazyflie. Figure 3 describes the overall system while Figs. 4 and 5 describe the refer-
ence generator and the on-board control architecture, respectively. In the event that the
desired position is not available (it should be published on the ROS topic command/tra-
jectory), the drone maintains its previous pose until the next waypoint.

Reference
Generator

On-board
Control

&
Motors

Dynamics

Crazyflie
2.0

Physical
Model

θc, φc

Ωc, ψ̇c

ω1, ω2

ω3, ω4

rk

xr, yr, zr, ψr

xd , yd , zd , ψk

pk qk
ud vd

Fig. 3. The control scheme. Subscript c refers to commands, r to references, d indicates the actual
drone variables and k indicates the sensors and data fusion outputs when the Crazyflie’s state
estimator is in the loop (when it is not, they are replaced by the values coming from the odometry).

CrazyS: a software-in-the-loop simulation platform 7

PIθc

ud

evxxe

+

−

PIφc

vd

evyye

+

−

Pψ̇c

ψk

eψ
ψr

+

−

PIDΩc

zd

ezzr

+

−

+

+

ωe

O
N
|
B
O
A
R
D

C
O
N
T
R
O
L

θc

φc

ψ̇c

∆ωe Ωc

∆φmc

∆θmc

∆ψmc

Ωmc

Fig. 4. The reference generator scheme. The obtained heuristic PID gains are: KPψ̇c
= 0.0914,

KPΩc
= 70, KIΩc

= 3.15, KDΩc
= 373, KPθc

= 3.59, KIθc
= 5.73, KPφc

=−3.59 and KIφc
=−5.73.

2.2.1 Reference generator

The reference generator uses drone measurements, in particular the drone position (xd ,
yd and zd) and its body-frame velocity (ud , vd), and the estimated orientation along
z-axis (i.e., the yaw ψk) to compute the command signals (θc, φc, Ωc and ψ̇c). In real
indoor applications the drone position and velocity come from a motion capture system
(MoCap), such as Vicon [47], Optitrack [48] or Qualisys [49]. Here, for simplicity we
modeled such data coming from an ideal (no bias and no noise) virtual odometry sen-
sor in the simulation environment. However the platform allows to model also typical
measurement data coming from such systems, without much difficulty.

As described by the overall scheme in Fig. 4, the reference generator computes
the desired attitude (θc and φc), the yaw rate (ψ̇c) and thrust (Ωc) commands for the
Crazyflie, later used as references for the on-board control system. Such command sig-
nals are limited as summarized in Table 2.

Sym. Unit Output limit
Roll command φc rad [−π/6, π/6]
Pitch command θc rad [−π/6, π/6]

Yaw rate command ψ̇c rads−1 [−1.11π, 1.11π]
Thrust command Ωc UINT16 [5156, 8163]

Table 2. Physical constraints of the Crazyflie 2.0 nano-quadcopter.

8 Giuseppe Silano et al.

Attitude
PID

250Hz

Rate PID
Controller

500Hz

Actuators
(motors)

Gyroscope

Accelerometer

Sensor Fusion

θc, φc pc

qc

500Hz250Hz

ψ̇c Ωc

θk φk pk qk
rk

+

−

+

−

+

Crazyflie

Fig. 5. On-board control architecture of the Crazyflie 2.0, release 2018.01.1. The obtained heuris-
tic gains are: KPpc

= 0.0611, KIpc
= 0.0349, KPqc

= 0.0611, KIqc
= 0.0349, KP∆φmc

= 1000,
KP∆θmc

= 1000, KP∆ψmc
= 1000 and KI∆ψmc

= 95.683.

The thrust is expressed directly as a pulse with modulation (PWM) signal (a 16 bit
unsigned integer), and obtained by the sum of two terms: the feedforward term ωe =
6874 corresponding to the hovering condition (perfect horizontal attitude and propellers
velocities that counteracts the gravity force) and the feedback term ∆ωe. The reference
signals xe and ye (see Fig. 4) are computed as:

xe = (xr− xd)cos(ψk)+(yr− yd)sin(ψk) (7a)
ye = (yr− yd)cos(ψk)− (xr− xd)sin(ψk). (7b)

Such signals are employed as setpoints for the velocities body-frame ud and vd , respec-
tively. As explained in [43], the logic behind such choice consists in the fact that bigger
is the error faster the quadcopter should move in order to arrive at the desired point.
Instead, when the error is small, the drone is close to the desired point and the setpoint
for the velocity should be also small.

2.2.2 On-board control system

The on-board control is decomposed into two parts: the attitude and the rate controller,
both illustrated in Fig. 5. They work together in a cascaded control structure. As com-
monly implemented in such structures, the inner loop needs to regulate at a rate faster
than the outer. In this case, the attitude controller runs at 250 Hz while the rate controller
runs at 500 Hz.

We considered the on-board control architecture existing in the firmware release2,
the 2018.01.1. The same software architecture has been followed also to integrate the
complementary filter (see Sec. 2.3.1), the default Crazyflie state estimator. Starting from

2 Of course that has been possible thanks to the fact that Crazyflie firmware is open-source.

CrazyS: a software-in-the-loop simulation platform 9

the accelerometer and gyroscope data, the filter allows to estimate the attitude (φk, θk
and ψk) and the angular velocities (pk, qk and rk) used by the on-board control loop
also managing the sensors’ bias and noise terms. All controller parameter values are
provided in the file controller crazyflie2.yaml and they can be easily mod-
ified as explained in Sec. 3.4.2.

Finally, we modeled the actuators dynamics (see Fig. 5) by considering the relation-
ship between the PWM signals sent to the motors and the actual propellers speed, so as
explained in [50],

ωi =
π

30
(
α ·PWMi +q

)
, (8)

where α = 0.2685 and q = 4070.3. The PWM signals are computed according to the
rate controller outputs ∆φmc, ∆θmc and ∆ψmc, i.e., the total variations from the equilib-
rium, and the thrust command Ωmc (that, in particular, corresponds to Ωc):

PWM1 = Ωmc− ∆θmc/2− ∆φmc/2−∆ψmc
PWM2 = Ωmc + ∆θmc/2− ∆φmc/2+∆ψmc
PWM3 = Ωmc + ∆θmc/2+ ∆φmc/2−∆ψmc
PWM4 = Ωmc− ∆θmc/2+ ∆φmc/2+∆ψmc.

(9)

Usually, a DC motor can be characterized as a first order transfer function, but in
our application a well approximated behavior assumes that the transient is fast enough
and that it will not cause much delay in the system.

2.3 State estimation
One of the key elements enabling stable and robust UAV flights is an accurate knowl-
edge of the state of the aircraft. In CrazyS, as well as in RotorS, such information can be
directly provided by an (ideal) odometry sensor. This means that position, orientation,
linear and angular velocities of the Crazyflie come from Gazebo plugins3.

As mentioned before, the odometry sensor has been used only to know the position
and the linear velocity of the vehicle. Conversely, the drone orientation and angular
velocity have been obtained by using the default Crazyflie state estimator: the comple-
mentary filter. Nevertheless, with the aim of highlighting the flexibility of the simulation
platform (it is quite easy to move from a simulation scenario to another), we compared
the outputs of the complementary filter with the ideal case (see Sec. 3.4.2) where posi-
tion, orientation, angular and linear velocities come from the odometry sensor (without
noise and bias). Therefore, in this section we will give an overview of how the filter
works (further details can be found in [51]) and how to model and integrate the IMU
measurements in Gazebo starting from the sensor datasheet values.

2.3.1 Complementary filter
The Kalman filter is a well known and established solution for combining sensors data
into navigation-ready data, although its nonlinear version is difficult to apply with low-
cost and high-noise sensors [52]. Moreover also Extended Kalman filter (EKF) tech-
niques might give unsatisfactory results [53] and accurate calibration for gyroscope

3 Such data can be easily processed by adding noise and bias terms when required, as explained
in [28].

10 Giuseppe Silano et al.

offsets, noise and other constants, might be needed to properly implement Kalman fil-
tering. On the other hand, complementary filters, that are not model based techniques,
are not well-suited for high-risk applications like space or unmanned missions. How-
ever, compared to Kalman filtering, the complementary filter is less computationally
intensive, requires less calibration and more readily performs on small, low-power pro-
cessing hardware. In practice that technique is ideal for small, low-cost aircrafts as the
Crazyflie 2.0. Thus, a complementary filter has been implemented in CrazyS. Neverthe-
less, a Kalman filter solution can be investigated and implemented in order to evaluate
the trade off between precision and computational burden. The modular structure of
CrazyS allows to replace the complementary filter with another estimator (e.g., Luen-
berger observer, EKF, particle filter, etc.), in easy way.

The key idea behind the complementary filter is to use the information coming from
the gyroscope (that is precise and not susceptible to external forces), and data from the
accelerometers (they have no drift). In particular, the on-board complementary filter of
the Crazyflie follows the implementation of Madgwick’s IMU and AHRS (Attitude and
Heading Reference Systems) algorithms [51].

Among its advantages, the filter allows a significant reduction in the computational
load, guarantees good performances and eliminates the need for a predefinition of the
magnetic field direction.

2.3.2 IMU sensor model

As explained in [54], we modeled the on-board Crazyflie’s IMU (MPU−9250, [41]) by
integrating it in the component snippets.xacro. The Xacro file [55], that is a
particular eXtensibile Markup Language (XML) file used to generate a more readable
and often shorter XML code, contains all the macros employed to model the sensors be-
havior in the Gazebo simulator. The XML tag structure allows to set properties that are
related to the physical features of the IMU, like the measurement delay, the divisor (it
allows to set up the sensor frequency response, see [56]), the mass or other physical pa-
rameters. The macros in such file can be used by any aircraft in the simulation environ-
ment, each one described by using an own xacro file (crazyflie2 base.xacro, in
our case). Such file contains the full list of the on-board integrated components (IMU,
barometer, camera, odometry sensor, etc.). More details on how they are related to the
launch files4 are reported in Sec. 3.3.1.

<xacro:macro name="crazyflie2_imu" params="namespace
parent_link">

<xacro:imu_plugin_macro
namespace="${namespace}"
imu_suffix=""
parent_link="${parent_link}"
imu_topic="imu"
measurement_delay="0"

4 Launch files are very common in ROS to both users and developers. They provide a convenient
way to start up multiple nodes and a master, as well as other initialization requirements such
as setting parameters.

CrazyS: a software-in-the-loop simulation platform 11

measurement_divisor="1"
mass_imu_sensor="0.00001"
gyroscope_noise_density="0.000175"
gyroscope_random_walk="0.0105"
gyroscope_bias_correlation_time="1000.0"
gyroscope_turn_on_bias_sigma= "0.09"
accelerometer_noise_density="0.003"
accelerometer_random_walk="0.18"
accelerometer_bias_correlation_time="300.0"
accelerometer_turn_on_bias_sigma="0.588">
<inertia ixx="0.00001" ixy="0.0" ixz="0.0" iyy="0.00001"

iyz="0.0" izz="0.00001" />
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:imu_plugin_macro>
</xacro:macro>

Listing 1.1. Crazyflie IMU tag structure.

In RotorS (and, thus, in CrazyS), measurements are modeled by two types of sensor
errors affecting both the angular rate measurement ω̃ and the linear acceleration ã,
expressed as

ω̃(t) = ω(t)+bω(t)+nω(t) (10a)
ã(t) = a(t)+ba(t)+na(t), (10b)

where n•(t) is an additive noise term that fluctuates very rapidly (the white noise) and
b•(t) is a slowly varying sensor bias. All gyroscope and accelerometer axis measure-
ments are modeled, independently. Table 3 summarizes all the model parameters that
are reported as entries in the Xacro file (see Listing 1.1).

Since the aim of this chapter is to illustrate a SITL simulation platform and its use
rather than simulating a specific hardware component, it is not important for our work to
identify accurately the model of all hardware components and sensors. Instead, we are

Sym. Unit Value
Gyroscope
White noise density nω rad/s/

√
Hz 0.000175

Random walk bω rad/s2/
√

Hz 0.0105
Bias correlation time btω s 1000
Turn on bias sigma bω0 rads−1 0.09
Accelerometers
White noise density na m/s2/

√
Hz 0.003

Random walk ba m/s3/
√

Hz 0.18
Bias correlation time bta s 300
Turn on bias sigma ba0 ms−2 0.588

Table 3. Summary of the IMU model parameters.

12 Giuseppe Silano et al.

interested in getting realistic values for the parameters of the simulated models. To this
aim datasheets are enough for getting values of interest. In particular, the accelerometer
and gyroscope noise densities (the white noise density) have been easily obtained from
the MPU−9250 datasheet, requiring just a scaling due to the fact that Gazebo uses SI
units measurements [57]. On the other hand, the bias part of the model (the random
walk) is rarely specified into datasheets. However it can be characterized [54,58,59] as

b• = n•
√

T , (11)

where the parameter n• is the noise density (aka spectral noise density), and T is the
time period over which the idealized white noise process is integrated (one hour, in our
case). Finally, the turn on bias and the bias correlation time refer to the bias value,
originated when the inertial sensor turns on, and its time constant, respectively [60].

As said previously, the above mentioned procedure is independently of a specific
sensor. Thus, it can be employed to model any sensor in the virtual scenario expanding
the functionalities of the simulation framework.

3 Tutorials

This section explains how to use the CrazyS simulation framework with its main com-
ponents. The setting-up in Ubuntu, both Trusty (14.04) and Xenial (16.04) distros, is
shown in Sec. 3.1.2. Although the platform is fully compatible with Indigo Igloo ver-
sion of ROS and Ubuntu 14.04, such configuration is not recommended since the ROS
support will close in April 2019.

Section 3.2 demonstrates how to put the nano-quadcopter into hovering mode, with
and without the aircraft on-board sensors, and how to attach such sensors to it (see
Sec. 3.3.1). Section 3.3 describes the simulator through the hovering example, while
Sec. 3.4 illustrates how to employ the Robotics System Toolbox for testing the con-
troller strategy before implementing the corresponding ROS code. The aim is to show
how the controlled system can change its behavior with respect to the Matlab/Simulink
version when tested in an environment closer to the reality like Gazebo, and how to
verify it before writing many lines of C++ or Python code.

3.1 Simulator setup

Before installing and using CrazyS, it is necessary to install and configure ROS
over a suitable Linux distribution. Although it could be possible to install ROS
also on other platforms (like MacOS), Ubuntu is the recommended operating sys-
tem (OS) and its package manager should be used to install all necessary dependen-
cies. All suggested operations are discussed on the official wiki-pages: see http://
wiki.ros.org/indigo/Installation/Ubuntu or http://wiki.ros.
org/kinetic/Installation/Ubuntu for Indigo Igloo and Kinetic Kame dis-
tros, respectively.

http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu

CrazyS: a software-in-the-loop simulation platform 13

3.1.1 Ubuntu with ROS

In this subsection, for the sake of completeness and practicality, we report the com-
mands for installing ROS Indigo Igloo (see Listing 1.2) and Kinetic Kame (see Listing
1.3). Before running such commands it is suggested to give a look at the OS compati-
bility in the official ROS wiki-pages mentioned above.

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $(lsb_release -sc) main" > /etc/apt/sources.
list.d/ros-latest.list’

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-
keyservers.net:80 --recv-key 421
C365BD9FF1F717815A3895523BAEEB01FA116

$ sudo apt-get update
$ sudo apt-get install ros-indigo-desktop-full
$ sudo rosdep init
$ rosdep update
$ echo "source /opt/ros/indigo/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc
$ sudo apt-get install python-rosinstall

Listing 1.2. Installation instructions - Ubuntu 14.04 with ROS Indigo Igloo.

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $(lsb_release -sc) main" > /etc/apt/sources.
list.d/ros-latest.list’

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-
keyservers.net:80 --recv-key 421
C365BD9FF1F717815A3895523BAEEB01FA116

$ sudo apt-get update
$ sudo apt-get install ros-kinetic-desktop-full
$ sudo rosdep init
$ rosdep update
$ echo "source /opt/ros/kinetic/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc
$ sudo apt-get install python-rosinstall python-

rosinstall-generator python-wstool build-essential

Listing 1.3. Installation instructions - Ubuntu 16.04 with ROS Kinetic Kame.

3.1.2 Installing CrazyS from source

After having configured both the OS and ROS, the platform can be installed from
source. Although CrazyS is completely independent of the chosen OS or ROS distri-
bution, the package dependencies have to be satisfied according to the chosen OS and
ROS distro. Therefore, in Listing 1.4 we report the installing procedure for the Kinetic
Kame version of ROS. Whereas, in Listing 1.5 the package dependencies for the Indigo
Igloo distro are reported (the procedure is exactly the same as for Kinetic Kame).

14 Giuseppe Silano et al.

$ sudo apt-get ros-kinetic-joy ros-kinetic-octomap-ros
ros-kinetic-mavlink python-catkin-tools protobuf-
compiler libgoogle-glog-dev ros-kinetic-control-
toolbox

$ mkdir -p ∼/catkin_ws/src
$ cd ∼/catkin_ws/src
$ catkin_init_workspace
$ catkin init
$ git clone https://github.com/gsilano/CrazyS.git
$ git clone https://github.com/gsilano/mav_comm.git
$ cd ∼/catkin_ws/src/mav_comm & git checkout crazys
$ rosdep update
$ cd ∼/catkin_ws
$ rosdep install --from-paths src -i
$ catkin build
$ echo "source ∼/catkin_ws/devel/setup.bash" >> ∼/.bashrc
$ source ∼/.bashrc

Listing 1.4. Installation instructions from source with ROS Kinetic Kame.

$ sudo apt-get ros-indigo-octomap-ros python-wstool
python-catkin-tools protobuf-compiler

$ sudo apt-get ros-indigo-joy libgoogle-glog-dev

Listing 1.5. Package dependencies for installing CrazyS from source with ROS Indigo Igloo.

Such procedure allows to create a workspace folder (catkin ws) that will contain
(in the src directory) the code that simulates the Crazyflie dynamics and behavior (de-
termined by sensors model and control algorithms). Further details about the workspace
and its meaning can be found in [61], while in [62] there are reported more details re-
garding messages and services used during the simulation.

3.2 Hovering example

Launching the simulation is quite simple, so as customizing it: it is enough to run in a
terminal the command

$ roslaunch rotors_gazebo crazyflie2_hovering_example.
launch

By default the state estimator is disabled since on-board Crazyflie’s sensors are
replaced by the odometry one. For running the simulation by taking into account the
Crazyflie’s IMU and the complementary filter, it is enough to give a command that
turns on the flag enable state estimator:

$ roslaunch rotors_gazebo crazyflie2_hovering_example.
launch enable_state_estimator:=true

The visual outcome will see the nano-quadcopter taking off after 5s (time after
which the hovering example node publishes the trajectory to follow) and flying one

CrazyS: a software-in-the-loop simulation platform 15

meter above the ground, at the same time keeping near to zero the position components
along x and y-axis.

For understanding how the controllers work (the reference generator and the
Crazyflie’s on-board controller, see Sec. 2.2), two plots of the drone position and ori-
entation have been added in the launch file. At each time step, data coming from the
Gazebo plugins are reported on the plots avoiding to go through the rosbag files5. The
flexible and fully controllable structure of the launch file allows to plot any information
coming from the simulator. Among such data we can consider the drone state (ud , vd ,
wd , etc.), the command signals (θc, φc, Ωc and ψ̇c) or the trajectory references (xr, yr,
zr and ψr).

3.3 Simulator description

This section is focused on describing how RotorS (and thus CrazyS), works together
with ROS and Gazebo, by considering as illustrative application the hovering example.
An overview of the main components is reported in Fig. 6 while further details can be
found in [28].

To facilitate the development of different control strategies, we recommend to pro-
vide a simple interface, like the modular architecture developed for CrazyS and appro-
priately adapted from RotorS. In the illustrative example we developed a linear position
control strategy (see Sec. 2.2), but other control laws can be considered, even nonlin-
ear [63,64,65]. Indeed, the simulator has to be meant as a starting point to implement
more advanced control strategies for the Crazyflie and, more generally, for any quadro-
tor that can be modeled in Gazebo through RotorS.

All the components of the nano-quadcopter are simulated by Gazebo plugins and
the Gazebo physics engine. The body of the aircraft consists of four rotors, which can
be placed in any location allowing configuration changes (e.g., from “+” to “×”, see
Sec. 3.3.1), and some sensors attached to the body (e.g., gyroscope, accelerometer,
camera, barometer, laser scanner, etc.). Each rotor has properly dynamics and accounts
for the most dominant aerodynamic effects. Also external influences can be taken into
account, such as a wind gust, but they are neglected in this tutorial chapter.

A further block is the state estimator, used to obtain information about the state of
the drone (see Sec. 2.3). While it is crucial on a real quadcopter, in simulation it can be
replaced by a generic (ideal) odometry sensor (with or without noise and bias) in order
to understand the effects of the state estimation. In Section 3.4.2 some graphics show
how the vehicle behavior changes when the drone state is not completely available and
it is partially replaced by the on-board complementary filter outputs.

In order to easily test different scenarios, ROS allows to use a suitable launch file. As
we said before, such file allows to enable or disable the state estimator. That means that
the drone orientation and angular velocities are provided by the odometry sensor when
the state estimator is turned off, and by the complementary filter (that uses gyroscope
and accelerometer data coming from the on-board IMU) when it is switched on (as de-
picted in Fig. 6). For simplicity, the proposed application considers that in both cases

5 Bags are typically created by a tool like rosbag, which subscribes to one or more ROS topic,
and stores the serialized message data in a file as it is received.

16 Giuseppe Silano et al.

Crazyflie
Control

Gazebo
Controller
Interface

Simulated
External

Influences

Simulated
Crazyflie
Dynamics

Simulated
Sensors

State
Estimator

Control Commands
Desired Motor

Velocities

IMU & Pose Measurements

Odometry Estimates

Dynamics

Odometry

Measurements

Gazebo

Fig. 6. Crazyflie 2.0 components in CrazyS, inspired by the RotorS structure.

the drone position and linear velocities are provided by the odometry sensor, as de-
scribed in Sec. 2.2. A different possibility might arise, when drones fly indoors [66,67],
when a MoCap system is used to provide such information. However, in place of the
complementary filter, a more complicated state estimator has to be used in that case.

It is important to highlight how all such features make the tool potentialities endless.
Once the Crazyflie is flying, higher level tasks can be carried out and tested in the
simulation environment, such as simultaneous localization and mapping (SLAM) [68],
planning [69], learning [70], collision avoidance [71], etc. Moreover, it is possible to
evaluate easily different scenarios (e.g., how a different sensor time response affects the
aircraft stability).

3.3.1 Model description and simulation

One of main objectives of using the proposed methodology is to simulate a scenario
quite closely to the real world, so that it comes easy the reuse of the software archi-
tecture when porting it on the real Crazyflie vehicle (e.g., through the ROS packages
Crazyswarm [33] or Crazyros [36,29]). With this aim we started from one of the avail-
able examples in RotorS (specifically the mav hovering example.launch) hav-
ing a quite detailed model of drone dynamics.

Thus, we cast that model and control parts to corresponding parts of the Crazyflie
nano-quadcopter by considering the specific components (see Fig. 6), the Crazyflie
physical dynamics and parameters, and the perception sensors. The overall ROS ar-
chitecture is depicted in Fig. 7 where the topics and nodes are represented. The whole
process is the following: the desired position coordinates (xr, yr, zr, ψr) are published

CrazyS: a software-in-the-loop simulation platform 17

/hovering example

/position controller node

/gazebo

/command/trajectory

/odometry /command/motor speed

crazyflie2

gazebo

Fig. 7. Graph of ROS nodes (ellipses) and topics (squares) of the hovering example with the
Crazyflie 2.0. The continuous line arrows are topic subscriptions, with directions going from the
subscriber node to the publisher one.

by the hovering example node on the topic command/trajectory, to which the position -
controller node (i.e., the Crazyflie controller) is subscribed. The drone state (odometry
topic) and the references are used to run the control strategy designed for the position
tracking. The outputs of the control algorithm consist into the actuation commands (ω1,
ω2, ω3 and ω4) sent to Gazebo (command/motor speed) for the physical simulation and
the corresponding graphical rendering, so to visually update the aircraft position and
orientation. When the state estimator is turned off, the drone orientation (φk, θk and
ψk) and angular velocities (pk, qk and rk) published on the topic odometry are replaced
by the ideal values coming from the odometry sensor. Thus, the on-board control archi-
tecture of the Crazyflie changes as depicted in Fig. 8.

RotorS uses Xacro files for describing vehicles, the same structure employed also
for the sensors. Thus, for defining the Crazyflie aircraft, the XML tag structure is em-
ployed to set properties that are related to the physical features of the drone, like the

Attitude
PID

250Hz

Rate PID
Controller

500Hz

Actuators
(motors)

Odometry
(ideal)
sensor

θc, φc pc

qc

500Hz

250Hz

ψ̇c Ωc

θd φd pd qd
rd

+

−

+

−

+

Crazyflie

Fig. 8. On-board control architecture of the Crazyflie 2.0 when the state estimator is not consid-
ered in the simulation: the estimated data are replaced by the ideal values.

18 Giuseppe Silano et al.

quadrotor aerodynamic coefficients [50] or other physical parameters [45]. In particu-
lar, the crazyflie2.xacro file (see Listing 1.6) allows to describe components and
properties such as the motors constant, the rolling moment coefficient, the mass of the
vehicle, the moments of inertia along the axes, the arm length, the propellers direction,
and so on, in according to the aircraft model (see Sec. 2.1). Such file is executed at
runtime when the simulation is going to start.

<robot name="crazyflie2" xmlns:xacro="http://ros.org/wiki
/xacro">

<xacro:property name="namespace" value="$(arg mav_name)"
/>

<xacro:property name="rotor_velocity_slowdown_sim" value=
"50" />

<xacro:property name="use_mesh_file" value="true" />
<xacro:property name="mesh_file" value="package://

rotors_description/meshes/crazyflie2.dae" />
<xacro:property name="mass" value="0.025" />
<xacro:property name="body_width" value="0.045" />
<xacro:property name="body_height" value="0.03" />
<xacro:property name="mass_rotor" value="0.0005" />
<xacro:property name="arm_length" value="0.046" />
<xacro:property name="rotor_offset_top" value="0.024" />
<xacro:property name="radius_rotor" value="0.0225" />
<xacro:property name="sin45" value="0.707106781186" />
<xacro:property name="cos45" value="0.707106781186" />

<xacro:property name="motor_constant" value="1.28192e-08"
/>

<xacro:property name="moment_constant" value="5.964552e
-03" />

<xacro:property name="time_constant_up" value="0.0125" />
<xacro:property name="time_constant_down" value="0.025" /

>
<xacro:property name="max_rot_velocity" value="2618" />
<xacro:property name="rotor_drag_coefficient" value="

8.06428e-05" />
<xacro:property name="rolling_moment_coefficient" value="

0.000001" />

...

<xacro:vertical_rotor
robot_namespace="${namespace}"
suffix="front-right"
direction="ccw"
motor_constant="${motor_constant}"

CrazyS: a software-in-the-loop simulation platform 19

moment_constant="${moment_constant}"
parent="${namespace}/base_link"
mass_rotor="${mass_rotor}"
radius_rotor="${radius_rotor}"
time_constant_up="${time_constant_up}"
time_constant_down="${time_constant_down}"
max_rot_velocity="${max_rot_velocity}"
motor_number="0"
rotor_drag_coefficient="${rotor_drag_coefficient}"
rolling_moment_coefficient="${rolling_moment_coefficient}

"
color="Red"
use_own_mesh="false"
mesh="">
<origin xyz="${cos45*arm_length} -${sin45*arm_length} ${

rotor_offset_top}" rpy="0 0 0" />
<xacro:insert_block name="rotor_inertia" />
</xacro:vertical_rotor>

...

Listing 1.6. Crazyflie 2.0 parameters and geometry file.

The mentioned files, i.e., crazyflie2.xacro, crazyflie base.xacro, com-
ponent snippets.xacro (see Sec. 2.3.2), are related to each other making the
aircraft model like a chain, where each link has a proper aim and without them the sim-
ulation cannot start. Thus, in order to facilitate the understanding and making clear how
to develop an own platform, Fig. 9 illustrates the overall architecture of the simulation
that is instantiated by invoking the launch file.

Conversely, the robot geometry has been modeled by using the open-source soft-
ware Blender (see Fig. 10) and the vertical rotor macro defined in the multiro-
tor base.xacro file. Starting from the mesh file available on [46], the digital rep-
resentation of the propellers has been changed from a “+” configuration (Crazyflie
1.0) to a “×” configuration (Crazyflie 2.0) providing textures and materials with the
crazyflie2.dae file (it employs the COLLADA [72] format). That illustrates how
it is possible to start from a CAD file, i.e., the 3D model of the vehicle, to the sim-
ulation environment in few steps, taking care to convert the file to a format readable
by Gazebo. In particular, it is possible to note how the position of the propellers was
set up by varying the parameters of the tag <origin xyz="X Y Z" rpy="ROLL
PITCH YAW"> (see Listing 1.6), where X, Y and Z represent the x, y and z propeller
coordinates in the fixed inertial frame, respectively, and ROLL, PITCH and YAW its
attitude.

3.4 Developing a custom controller

This section (in particular Sec. 3.4.1) explains how to use the MathWorks Robotics Sys-
tem Toolbox [73] to build-up a SITL simulation architecture in which Simulink schemes

20 Giuseppe Silano et al.

crazyflie2 hovering example.launch

spawn mav crazyflie.launch

crazyflie base.xacro

component snippets.xacro

crazyflie2.xacro

crazyflie2.dae

Gazebo

Simulate the on-board
sensors and configure

simulation features

Simulate dynam-
ics and geometry

Fig. 9. The software flow diagram in CrazyS. The rectangles represent the file while the arrows
the flow of calls from the launch file to the Gazebo 3D virtual environment.

of control loops6 are reused and interfaced to Gazebo in order to simulate the detailed
aircraft physical model. The C++ code implementation of the Simulink schemes and
their ROS integration will be discussed in the following Sec. 3.4.2 by closing the pro-
cess and achieving the final and complete SITL simulation architecture. The overall
procedure will be described in details, however we illustrate here the motivations of the
proposed approach.

The first phase based on MathWorks RST allows in few steps to compare the re-
sults obtained from the interaction between Simulink schemes (controller) and Gazebo
(physics) with the outcomes of the system completely implemented in Matlab/Simulink
(both physical model and controller). In this way, implementation details like controller
discretization, concurrency, timing issues, can be isolated when looking at the Mat-
lab/Simulink platform only, while their effects can be investigated by considering the
Simulink and Gazebo simulations.

6 Matlab/Simulink is widely spread among control engineers that use those tools for design-
ing their control strategies. Control design is not the aim of the chapter and thus we assume
Simulink schemes have already been defined in an earlier phase and are available for the SITL
simulation.

CrazyS: a software-in-the-loop simulation platform 21

Fig. 10. Crazyflie digital representation by using the open-source software Blender.

In few words, the RST allows in an easy way to test and verify the behavior of
the flight control system (see Sec. 2.2), by comparing and evaluating different control
strategies, making possible to come back easily to the control design phase (whose
outputs are usually the Simulink schemes) before implementing the ROS code. Such
approach saves time in the development of possible problematic code and fulfills re-
quirements of modern embedded systems development based on the well-known V-
Model [31].

The entire process has been tested with the 2017b release of Matlab, but it is com-
patible with any Matlab release successive to 2015a. The code is specific for the use
case study, but it can be easily and quickly customized to work with any quadrotor in
the simulation framework.

3.4.1 Robotics System Toolbox

The MathWorks Robotics System Toolbox provides an interface [74] between Mat-
lab/Simulink and ROS, allowing to establish a connection with the ROS master (Gazebo
in our case) directly controlling the Crazyflie dynamics.

Starting from that scheme, the feedback loops are replaced by RST blocks imple-
menting the publish/subscribe paradigm dealing with ROS topics, as depicted in Fig.
11. The Gazebo plugins will provide the sensors data, while the controller outputs (ac-
tuators commands) will be sent to the detailed physical model in the virtual scenario.
Therefore, the Crazyflie model, that was present in the Simulink scheme when sim-
ulating the controlled drone dynamics in Matlab, can be removed. Although now the
simulation is based on the phsyical engine of Gazebo and runs through the ROS mid-
dleware, any change or modification of the control law is limited to standard Simulink
blocks at a higher abstraction level.

22 Giuseppe Silano et al.

Drone	state

Trajectory	references

Propellers	angular	velocity

Flight	Control	System

ROS

Publish

/command/motor_speed

Msg

ROS

Blank	Message

mav_msgs/Actuators

Msg

ROS

Subscribe

/odometry

IsNew

Msg
Msg

Msg

:=	Prop. ang. vel.

[x_r	y_r	z_r	psi_r]

Trajectory	references

Fig. 11. Simulink control scheme by using RST blocks. The red box highlights the block imple-
menting the ROS topic subscription to the sensors values, while the green box indicates the block
in charge to publish the propellers angular velocity.

RST is available from the 2015a release of Matlab but not all types of ROS messages
are supported. In particular, RST does not support mav msgs/Actuators messages
employed in RotorS to send the propellers angular velocities to the Gazebo physics en-
gine, at least till Matlab release 2017b. The issue can be partially overcome by installing
a suitable add-ons roboticsAddons, hosted on the MathWorks add-ons explore site
[75], and by creating the custom messages starting from the properly ROS package
[76]. Indeed, the toolbox supports the forwarding of custom messages only via Matlab
scripts. Therefore, the Simulink schemes have to be adapted and integrated with Matlab
scripts for exchanging data and commands with ROS and Gazebo. Due to space con-
straints, the whole procedure as well as the employed schemes and scripts will not be
described here but all information are available in [77].

As shown in [77,78], the communication between Simulink and Gazebo needs to
be synchronized via Gazebo services (unpause and pause physics) that run and stop
the simulation so to avoid data losses and system instabilities. When the scheme runs
in synchronization mode, the client (Matlab) is in charge of deciding when the next
step should be triggered by making the server (Gazebo) advance the simulation. In this
way it is avoided any possible synchronization/communication issue arising from a real
implementation of a cyberphysical system. When the control strategy is sufficiently
investigated and verified, all implementation issues can be modeled and/or taken into
account thus removing the artificial synchronization and proceeding with the coding for
implementing the control strategy on middleware like ROS or even on a real time OS.

In Listing 1.7 the launch code (specifically the crazyflie without control-
ler.launch) employed to link Matlab/Simulink with ROS and Gazebo, is reported.
Such code starts the server (Gazebo) that simulates the Crazyflie dynamics and sensors.
Then, Gazebo goes in stand-by waiting for the Simulink scheme implementing the con-
troller. It will be in charge to run and pause the physical engine computations in order
to simulate the controlled scenario.

<launch>

CrazyS: a software-in-the-loop simulation platform 23

<arg name="mav_name" default="crazyflie2"/>
<arg name="world_name" default="basic"/>
<arg name="enable_logging" default="false" />
<arg name="enable_ground_truth" default="true" />
<arg name="enable_state_estimator" default="false" />
<arg name="log_file" default="$(arg mav_name)" />
<arg name="paused" value="true"/>
<arg name="debug" default="false"/>
<arg name="gui" default="true"/>
<arg name="verbose" default="false"/>

<env name="GAZEBO_MODEL_PATH" value="${GAZEBO_MODEL_PATH
}:$(find rotors_gazebo)/models"/>

<env name="GAZEBO_RESOURCE_PATH" value="${
GAZEBO_RESOURCE_PATH}:$(find rotors_gazebo)/models"/>

<include file="$(find gazebo_ros)/launch/empty_world.
launch">

<arg name="world_name" value="$(find rotors_gazebo)/
worlds/$(arg world_name)_crazyflie.world" />

<arg name="debug" value="$(arg debug)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="gui" value="$(arg gui)" />
<arg name="verbose" value="$(arg verbose)"/>

</include>

</launch>

Listing 1.7. Launch file employed to simulate the Crazyflie dynamics and sensors.

Note that although the RST supports C++ code generation [79] and it is able to
generate automatically a ROS node from a Simulink scheme and deploying it into a
ROS network, it is not immediate to integrate everything within RotorS obtaining, at the
same time, a readable code. Thus, we followed the approach of developing manually
the code paying attention to the software reuse and to modular design.

3.4.2 ROS integration

In this section it is described and analyzed the code structure that implements the con-
troller of the vehicle. As illustrated in Fig. 7 and already referred in Sec. 3.3.1, the
nav msgs/Odometry messages published on the topic odometry by Gazebo, are handled
by the position controller node that has the aim of computing the propellers speed. Such
speeds are later published on the command/motor speed topic through mav msgs/Actu-
ators messages.

The controller implementation is divided into two main parts: the first part han-
dles the parameters and the messages passing, and it is implemented as a ROS node
(i.e., the position controller node); while the second part is a library of functions,

24 Giuseppe Silano et al.

called by the ROS node and get linked to it at compilation time by using the CMake-
List.txt file7, that implements all required computations (the crazyflie onboard -
controller, the crazyflie complementary filter, etc.). Parameters (both controller and
vehicle ones) are set in YAML files8 (e.g., controller crazyflie2.yaml,
crazyflie2.yaml, etc.) and passed to the ROS parameter server by using the
launch file in which the following line between the <node> tags is added.

<rosparam command="load" file= "$(find rotors_gazebo)/
resource/controller_crazyflie2.yaml"/>

The ROS parameter server makes those values available to the ROS network avoid-
ing to build-up all executables every time a slight modification occurs (a very time
consuming step). In this way it is possible to modify the controller gains described
in Sec. 2.2 or the vehicle parameters (like the Crazyflie mass, its inertia or the rotor
configuration) in a very simple way, evaluating more quickly how system performance
changes at each different simulation.

In order to show the potentialities and the flexibility of the platform, a ROS node
has been developed to simulate the scenario with and without the Crazyflie on-board
state estimator. The node is able to catch the data coming from Gazebo, or other nodes
in the ROS network (e.g., the hovering example that is in charge to publish the trajec-
tory to follow), and to send the actuation commands (ω1, ω2, ω3 and ω4) to the Gazebo
physics engine. To that aim, a suitable launch file, i.e., the crazyflie2 hover-
ing example.launch, was made to handle the simulation starting. That file allows
to switch from a scenario to another one by varying the boolean value of the variable
enable state estimator as illustrated in Sec. 3.2.

When the state estimator is disabled (i.e., the odometry sensor is used), the callback
methods work only with the Odometry (for reading sensors data) and MultiDOFJoint-
Trajectory (for reading trajectory references) messages. Instead, when the complemen-
tary filter works a callback method considers also the IMU messages. ROS timers have
been introduced for dealing with the update rate of the Crazyflie on-board control and
the sampling time of the position control loop (chosen to be 1ms as defined in ba-
sic crazyflie.world file). In both cases, at each time step, the method Cal-
culateRotorVelocities computes the rotor velocities ωi from the controller’s
input and drone current (or estimated) state.

In order to facilitate the reuse of the software modules developed in CrazyS, the
inner loop (the attitude and rate controllers, i.e., the Crazyflie on-board controller, see
Fig. 5) and the complementary filter have been implemented as libraries. In such a way,
state estimators and controllers can be easily employed in any node of the ROS network
or replaced by improving Crazyflie’s performance. In Figure 12 the CrazyS packages
structures and the main files included into the CrazyS ROS repository are depicted.

The overall system has been simulated through Gazebo/ROS and the results illus-
trate in a direct way how the system works (the corresponding video is available [80]):

7 It manages the build process of the software. It supports directory hierarchies and applications
that depend on multiple libraries.

8 YAML (YAML Ain’t Markup Language) is a human-readable data serialization language and
is commonly used for configuration files. YAML targets many of the same communications
applications as XML but has a minimal syntax which intentionally breaks.

CrazyS: a software-in-the-loop simulation platform 25

rotors control

- roll pitch yawrate thrust controller
- lee position controller
- position controller
- library

- crazyflie complementary filter
- crazyflie onboard controller
- sensfusion6
- roll pitch yawrate thrust controller
- lee position controller

rotors description

- URDF files
- Sensors
- MAV Models
- Component macros

- Mesh files

rotors gazebo

- launch files
- resources

- yaml files
- odometry sample images

- src
- hovering example
- waypoint publisher

- Gazebo worlds

rotors gazebo plugins

- Bag plugin
- Controller interface plugin

- IMU plugin
- Motor model plugin
- Multirotor base plugin
- Octomap plugin
- Odometry plugin

- Wind plugin

rotors joy interface

- Joystick interface to control a MAV via
roll, pitch, yaw-rate, thrust commands

rotors evaluation

- src
- disturbance eval
- hovering eval

CrazyS

Fig. 12. Structures of the packages contained in the CrazyS repository.

the Crazyflie 2.0 keeps the hovering position until the simulation stops. Moreover, from
the video [81] it appears evident how the control system is able to compensate attitude
and position disturbances coming back to the hovering position. Finally, a further sce-
nario (video [82]) considers the “real” sensors (see Fig. 5) by taking into account the
IMU and the complementary filter. All the experiments have been carried out by using
Kinetic Kame version of ROS (as we said before, it is also compatible with the Indigo
Igloo version) for visualization and scripting, and they were run on a workstation based
on Xeon E3-1245 3.50GHz, Gallium 0.4 on NV117 and 32GB of RAM with Ubuntu
16.04.

Figure 13 reports numerical results obtained in Matlab/Simulink (both the physical
model and control are simulated there) by considering the perfect state information (“n”
subscript signals, solid lines). Simulation results obtained in Gazebo/ROS (“s” subscript
signals) are depicted, as well. In particular, the subscript “imu” has been used to dis-
criminate the data when the state estimator is in the loop. The controller works quite
well in all considered scenarios. Nevertheless, designing a high performance hovering
controller is not the aim of this work but we considered such task to show the advan-
tages of the SITL simulation implemented through the CrazyS platform. From a control
point of view, better results might be obtained by using a Kalman filter [83] (already
developed in the Crazyflie firmware but not used as the default state estimator, probably
due to the increase of computational burden) or the new on-board control [84] released
with the 2018.10 version of the firmware.

3.5 Continuous integration system

In this section we illustrate our proposed solution to link the continuous integration
(CI) open-source platform TravisCI [85] with the CrazyS repository. Moreover we de-

26 Giuseppe Silano et al.

0 10 20 30 40 50

−1

0

1

·10−2

Time [s]

D
is

ta
nc

e
[m

]
xs
ys
xsimu
ysimu

0 20 40 60
0

0.5

1

Time [s]

A
lti

tu
de

[m
]

zs
zsimu
zn

Fig. 13. Drone position during the hovering example. In red the numerical results (Mat-
lab/Simulink) and in blue and green the simulation results (Gazebo/ROS) with and without the
real sensors.

scribe the corresponding advantages that a CI system may give when developing a ROS
component like CrazyS.

Listing 1.8 reports the script used to configure the CrazyS repository with TravisCI.
The code is based on an existing open-source project [86] and has been customized to
make it compatible with the Kinetic Kame distro of ROS. Also, a pull request [87] has
been opened to share our code with other researchers and developers.

matrix:
include:

- os: linux
dist: trusty
sudo: required
env: ROS_DISTRO=indigo

- os: linux
dist: xenial
sudo: required
env: ROS_DISTRO=kinetic

language:
- generic

cache:
- apt

env:
global:

- ROS_CI_DESKTOP="‘lsb_release -cs‘"
- CI_SOURCE_PATH=$(pwd)
- ROSINSTALL_FILE=$CI_SOURCE_PATH/dependencies.
rosinstall

CrazyS: a software-in-the-loop simulation platform 27

- CATKIN_OPTIONS=$CI_SOURCE_PATH/catkin.options
- ROS_PARALLEL_JOBS=’-j8 -l6’
- PYTHONPATH=$PYTHONPATH:/usr/lib/python2.7/dist-
packages:/usr/local/lib/python2.7/dist-packages

before_install:
- sudo sh -c ’echo "deb http://packages.ros.org/ros/
ubuntu $ROS_CI_DESKTOP main" > /etc/apt/sources.list.d
/ros-latest.list’
- wget http://packages.ros.org/ros.key -O - | sudo
apt-key add -
- if [["$ROS_DISTRO" == "indigo"]]; then sudo apt-
get update && sudo apt-get install dpkg; fi
- if [["$ROS_DISTRO" == "kinetic"]]; then sudo rm /
var/lib/dpkg/lock; fi
- if [["$ROS_DISTRO" == "kinetic"]]; then sudo dpkg
--configure -a; fi
- sudo apt-get update
- sudo apt-get install ros-$ROS_DISTRO-desktop-full
ros-$ROS_DISTRO-joy ros-$ROS_DISTRO-octomap-ros python
-wstool python-catkin-tools
- sudo apt-get install protobuf-compiler libgoogle-
glog-dev
- sudo rosdep init
- rosdep update
- source /opt/ros/$ROS_DISTRO/setup.bash

install:
- mkdir -p ∼/catkin_ws/src
- cd ∼/catkin_ws/src
- catkin_init_workspace
- catkin init
- git clone https://github.com/gsilano/CrazyS.git
- git clone https://github.com/gsilano/mav_comm.git
- rosdep update
- cd ∼/catkin_ws
- rosdep install --from-paths src -i
- catkin build
- echo "source ∼/catkin_ws/devel/setup.bash" >> ∼/.
bashrc
- source ∼/.bashrc

Listing 1.8. TravisCI script for Ubuntu 14.04 and 16.04 with ROS Indigo Igloo and Kinetic
Kame, respectively.

28 Giuseppe Silano et al.

In order to use TravisCI, a GitHub account and the TravisCI script are all the nec-
essary components. The script, i.e., the .travis.yml file, has to be put in the root of
the active repository9.

Looking at the listing, the file is split into five main parts: include, language
and cache, env, before install and install. In the first part, the matrix
command tells TravisCI that two machines should be created sequentially. That allows
to build and to test the code with different ROS distros (Indigo Igloo and Kinetic Kame,
in our case) and OS (Thrusty and Xenial, 14.04 and 16.04 versions of Ubuntu, respec-
tively) through the include command.

The second part, language and cache, enables the installing of the required ROS
packages (see Sec. 3.1). It allows to customize the environment running in a virtual
machine. Finally, the parts env and before install configure all variables (they
are used to trigger a build matrix) and system dependencies.

When the process starts, the catkin workspace is build with all the packages under
integration (the commands listed in the install section). TravisCI clones the GitHub
repository(-ies) into a new virtual environment, and carries out a series of tasks to build
and test the code. If one or more of those tasks fails, the build is considered broken.
If none of the tasks fails, the build is considered passed, and TravisCI can deploy the
code to a web server, or an application host. In particular, the build is considered broken
when one or more of its jobs complete with a state that is not passed:

– errored: a command in the before install or install phase returned a non-
zero exit code. The job stops immediately;

– failed: a command in the script phase returned a non-zero exit code. The job con-
tinues to run until it completes;

– canceled: a user cancels the job before it completes.

At the end of the process, email notifications are sent to all the listed contributors
members of the repository. The notifications can be forwarded: on success, on failure,
always or never. Finally, the CI system can be also employed to automatically generate
documentation starting from the source code and to link it to an online hosting. It is
very useful when the project is going to increase or a lot of people are working on it or,
more generally, when it is difficult to have an overview of the developed code. Further
information on how to use the CI system and how to configure it can be found in [88].

Such procedure allows to easily verify the code quality, underlying errors and warn-
ings through automated software build (including tests), that may not appear when
building on own machine. It also ensures that modules working individually (e.g.,
SLAM, vision or sensors fusion algorithms) do not fail when they are put together
due to causes that were difficult to predict during the development phase. For all such
reasons, having a software tool able to catch what happened and why it happened, and
able to suggest possible solutions, is extremely desirable when working with complex
platforms as Gazebo and ROS.

9 For students or academics, GitHub gives the possibility to build infinite private builds.

CrazyS: a software-in-the-loop simulation platform 29

4 Conclusion and future work

In this tutorial chapter we illustrated how to expand the functionalities of the ROS pack-
age RotorS for modeling and integrating the nano-quadcopter Crazyflie 2.0 in a detailed
simulation framework achieving a complete SITL simulation solution. The overall ap-
proach aimed at developing the system in a modular way by facilitating the reuse of
software modules. The proposed methodology allows to combine different state esti-
mators and control algorithms, evaluating the performances before deploying them on
a real device.

The chapter discussed the CrazyS platform from the installation to the development
of a custom controller and the presentation has been thought not only for researchers
but also for educational purposes, so that interested students might work in a complete
and powerful environment developing their own algorithms.

Future directions for this works can include several aspects. Firstly, controller’s
code and all proposed algorithms should be tested in real-world experiments on the
real Crazyflie platform in different scenarios, thus allowing to understand in a quan-
titative way how the CrazyS platform reflects the real drone behavior. Secondly, the
latest firmware release, the 2018.10, may be included in the repository, aligning CrazyS
with the current version of the quadcopter. Finally, it may be possible to look for some
improvements of the inner loop (on-board controller) that, after having been tested on
CrazyS, can be thought to replace the on-board controller of the Crazyflie.

References

1. D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopoulos, A. Martinelli,
M. W. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, D. Gurdan, L. Heng, G. H. Lee,
S. Lynen, M. Pollefeys, A. Renzaglia, R. Siegwart, J. C. Stumpf, P. Tanskanen, C. Troiani,
S. Weiss, and L. Meier, “Vision-Controlled Micro Flying Robots: From System Design to
Autonomous Navigation and Mapping in GPS-Denied Environments,” IEEE Robotics Au-
tomation Magazine, vol. 21, no. 3, pp. 26–40, 2014.

2. M. A. Stuart, L. L. Marc, and J. C. Friedland, “High Resolution Imagery Collection for Post-
Disaster Studies Utilizing Unmanned Aircraft Systems,” Photogrammetric Engineering and
Remote Sensing, vol. 80, no. 12, pp. 1161–1168, 2014.

3. D. Erdos, A. Erdos, and S. E. Watkins, “An experimental UAV system for search and rescue
challenge,” IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 5, pp. 32–37,
2013.

4. S. Choi and E. Kim, “Image acquisition system for construction inspection based on small
unmanned aerial vehicle,” Lecture Notes in Electrical Engineering, vol. 352, pp. 273–280,
2015.

5. C. Eschmann, C. M. Kuo, C. H. Kuo, and C. Boller, “Unmanned aircraft systems for re-
mote building inspection and monitoring,” in 6th European Workshop - Structural Health
Monitoring, vol. 2, 2012, pp. 1179–1186.

6. F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, and M. Polle-
feys, “Vision-based autonomous mapping and exploration using a quadrotor MAV,” in IEEE
International Conference on Intelligent Robots and Systems, 2012, pp. 4557–4564.

30 Giuseppe Silano et al.

7. B. Kamel, M. C. S. Santana, and T. C. De Almeida, “Position estimation of autonomous
aerial navigation based on hough transform and harris corners detection,” in International
conference on Circuits, Systems, Electronics, Control and Signal Processing, 2010, pp. 148–
153.

8. K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, “A survey of unmanned
aerial vehicles (UAVs) for traffic monitoring,” in International Conference on Unmanned
Aircraft Systems, 2013, pp. 221–234.

9. J. Xu, G. Solmaz, R. Rahmatizadeh, D. Turgut, and L. Boloni, “Animal monitoring with
unmanned aerial vehicle-aided wireless sensor networks,” in IEEE 40th conference on local
computer networks, 2015, pp. 125–132.

10. D. Anthony, S. Elbaum, A. Lorenz, and C. Detweiler, “On crop height estimation with
UAVs,” in IEEE International conference on Intelligent Robots and Systems, 2014, pp. 4805–
4812.

11. C. Bills, J. Chen, and A. Saxena, “Autonomous MAV flight in indoor environments using sin-
gle image perspective cues,” in IEEE international conference on robotics and automation,
2011, pp. 5776–5783.

12. M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based MAV navigation in
unknown and unstructured environments,” in IEEE international conference on robotics and
automation, 2010, pp. 21–28.

13. B. Landry, “Planning and control for quadrotor flight through cluttered environments,” Mas-
ter’s thesis, MIT, 2015.

14. D. Ferreira de Castro and D. A. dos Santos, “A Software-in-the-Loop Simulation Scheme for
Position Formation Flight of Multicopters,” Journal of Aerospace Technology and Manage-
ment, vol. 8, no. 4, pp. 431–440, 2016.

15. M. Mancini, G. Costante, P. Valigi, T. A. Ciarfuglia, J. Delmerico, and D. Scaramuzza,
“Toward Domain Independence for Learning-Based Monocular Depth Estimation,” IEEE
Robotics and Automation Letters, vol. 2, no. 3, pp. 1778–1785, 2017.

16. T. Hinzmann, J. L. Schönberger, M. Pollefeys, and R. Siegwart, “Mapping on the Fly: Real-
Time 3D Dense Reconstruction, Digital Surface Map and Incremental Orthomosaic Genera-
tion for Unmanned Aerial Vehicles,” in Field and Service Robotics. Springer International
Publishing, 2018, pp. 383–396.

17. I. A. Sucan and S. Chitta, “Moveit!” 2013. [Online]. Available: http://moveit.ros.org/
18. A. Tallavajhula and A. Kelly, “Construction and validation of a high fidelity simulator for

a planar range sensor,” in IEEE Conference on Robotics and Automation, 2015, pp. 6261–
6266.

19. R. Diankov and J. Kuffner, “Openrave: A planning architecture for autonomous robotics,”
Robotics Institute, Pittsburgh, PA, Tech. Rep. 79, 2008.

20. A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography,” Journal of Robotics, 2012, article ID 959013.

21. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” in IEEE International Conference on Intelligent Robots and Systems, 2004,
pp. 2149–2154.

22. E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a Versatile and Scalable Robot Sim-
ulation Framework,” in IEEE International Conference on Intelligent Robots and Systems,
2013, pp. 1321–1326.

23. O. Michel, “Webots professional mobile robot simulation,” International Journal of Ad-
vanced Robotics Systems, vol. 1, pp. 39–42, 2004.

24. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles,” in Field and Service Robotics, 2017.

http://moveit.ros.org/

CrazyS: a software-in-the-loop simulation platform 31

25. G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular open robots simula-
tion engine: MORSE,” in 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 46–51.

26. Bitcraze AB, “Crazyflie official website.” [Online]. Available: https://www.bitcraze.io/
27. J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk, “Comprehensive

Simulation of Quadrotor UAVs Using ROS and Gazebo,” in Simulation, Modeling, and Pro-
gramming for Autonomous Robots, I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, Eds.
Springer Berlin Heidelberg, 2012, pp. 400–411.

28. F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS – A Modular Gazebo MAV Sim-
ulator Framework,” in Robot Operating System (ROS): The Complete Reference (Volume 1),
K. Anis, Ed. Springer International Publishing, 2016, pp. 595–625.

29. W. Hönig and N. Ayanian, “Flying Multiple UAVs using ROS,” in Robot Operating Sys-
tem (ROS): The Complete Reference (Volume 2), A. Koubaa, Ed. Springer International
Publishing, 2017, pp. 83–118.

30. H. Shokry and M. Hinchey, “Model-Based Verification of Embedded Software,” Computer,
vol. 42, no. 4, pp. 53–59, 4 2009.

31. H. Van der Auweraer, J. Anthonis, S. De Bruyne, and J. Leuridan, “Virtual engineering
at work: the challenges for designing mechatronic products,” Engineering with Computers,
vol. 29, no. 3, pp. 389–408, 2013.

32. A. Aminzadeh, M. Atashgah, and A. Roudbari, “Software in the loop framework for the
performance assessment of a navigation and control system of an unmanned aerial vehicle,”
IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 1, pp. 50–57, 1 2018.

33. J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-
quadcopter swarm,” in IEEE International Conference on Robotics and Automation, 2017,
pp. 3299–3304.

34. B. Galea and P. G. Kry, “Tethered flight control of a small quadrotor robot for stippling,” in
IEEE International Conference on Intelligent Robots and Systems, 2017, pp. 1713–1718.

35. B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli, and D. Rus, “Multi-robot path planning
for a swarm of robots that can both fly and drive,” in IEEE International Conference on
Robotics and Automation, 2017, pp. 5575–5582.

36. W. Hönig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian, “Mixed reality for
robotics,” in IEEE International Conference on Intelligent Robots and Systems, 2015, pp.
5382–5387.

37. W. Giernacki, M. Skwierczyski, W. Witwicki, P. Wroski, and P. Kozierski, “Crazyflie 2.0
quadrotor as a platform for research and education in robotics and control engineering,” in
22nd International Conference on Methods and Models in Automation and Robotics, 2017,
pp. 37–42.

38. N. Bucki and M. W. Mueller, “Improved Quadcopter Disturbance Rejection Using Added
Angular Momentum,” in 2018 IEEE International Conference on Intelligent Robots and Sys-
tems, 2018.

39. G. Silano, “CrazyS GitHub Repository,” 2018. [Online]. Available: https://github.com/
gsilano/CrazyS

40. ——, “CrazyS GitHub pull request on RotorS,” 2018. [Online]. Available: https:
//github.com/ethz-asl/rotors simulator/pull/465

41. Bitcraze AB, “Crazyflie 2.0 hardware specification,” Bitcraze Wiki, 2018. [Online].
Available: https://goo.gl/1kLDqc

42. G. Silano, E. Aucone, and L. Iannelli, “CrazyS: a software-in-the-loop platform for the
Crazyflie 2.0 nano-quadcopter,” in 2018 26th Mediterranean Conference on Control and
Automation, June 2018, pp. 352–357.

https://www.bitcraze.io/
https://github.com/gsilano/CrazyS
https://github.com/gsilano/CrazyS
https://github.com/ethz-asl/rotors_simulator/pull/465
https://github.com/ethz-asl/rotors_simulator/pull/465
https://goo.gl/1kLDqc

32 Giuseppe Silano et al.

43. C. Luis and J. Le Ny, “Design of a Trajectory Tracking Controller for a Nanoquadcopter,”
École Polytechnique de Montréal, Tech. Rep., 2016. [Online]. Available: https:
//arxiv.org/pdf/1608.05786.pdf

44. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics - Modelling, Planning and
Control, 2nd ed., ser. Advanced Textbooks in Control and Signal Processing. Springer,
2008.

45. J. Förster, “System identification of the Crazyflie 2.0 nano quadrocopter,” Bachelor’s Thesis,
2015, ETH Zurich. [Online]. Available: https://www.research-collection.ethz.ch/handle/20.
500.11850/214143

46. The Automatic Coordination of Teams Lab, “GitHub Repository, RotorS fork, crazyflie-dev
branch.” [Online]. Available: https://goo.gl/tBbS9G

47. Vicon Motion Systems, “Vicon official website,” 2018. [Online]. Available: https:
//www.vicon.com

48. NaturalPoint, Inc., “Optitrack official website,” 2018. [Online]. Available: http://optitrack.
com/

49. Qualisys AB, “Qualisys official website,” 2018. [Online]. Available: https://www.qualisys.
com/

50. G. Subramanian, “Nonlinear control strategies for quadrotors and CubeSats,” Master’s thesis,
University of Illinois, 2015.

51. S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG
orientation using a gradient descent algorithm,” in 2011 IEEE International Conference on
Rehabilitation Robotics, June 2011, pp. 1–7.

52. J. Myungsoo, S. I. Roumeliotis, and G. S. Sukhatme, “State estimation of an autonomous
helicopter using Kalman filtering,” in 1999 IEEE International Conference on Intelligent
Robots and Systems. Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients, vol. 3, 1999, pp. 1346–1353.

53. J. M. Roberts, P. I. Corke, and G. Buskey, “Low-cost flight control system for a small au-
tonomous helicopter,” in 2003 IEEE International Conference on Robotics and Automation,
vol. 1, Sept 2003, pp. 546–551.

54. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Cal-
ibrating the Extrinsics of Multiple IMUs and of Individual Axes,” in IEEE International
Conference on Robotics and Automation, 2016, pp. 4304–4311.

55. S. Glaser and W. Woodall, “Xacro (2015).” [Online]. Available: https://wiki.ros.org/xacro
56. RotorS GitHub issues tracker, “Increase Odometry sensor rate.” [Online]. Available:

https://github.com/ethz-asl/rotors simulator/issues/423
57. Kalibr issue tracker, “Kalibr Calibration.” [Online]. Available: https://github.com/imrasp/

LearnVI Drone/issues/1#issuecomment-350726256
58. ——, “Obtaining IMU parameterss from datasheet,” 2018. [Online]. Available: https:

//github.com/ethz-asl/kalibr/issues/63
59. Kalibr GitHub wiki, “IMU Noise Model, Kalibr Wiki.” [Online]. Available: https:

//github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
60. J. Zheng, M. Qi, K. Xiang, and M. Pang, “IMU Performance Analysis for a Pedestrian

Tracker,” in Intelligent Robotics and Applications, Y. Huang, H. Wu, H. Liu, and Z. Yin,
Eds. Springer International Publishing, 2017, pp. 494–504.

61. W. Woodall, “Creating a workspace for catkin,” 2018. [Online]. Available: http:
//wiki.ros.org/catkin/Tutorials/create a workspace

62. Autonomous System Laboratory, “mav comm repository,” 2018. [Online]. Available:
https://github.com/ethz-asl/mav comm

63. Z. Liu and K. Hedrick, “Dynamic surface control techniques applied to horizontal position
control of a quadrotor,” in 2016 20th International Conference on System Theory, Control
and Computing (ICSTCC), 2016, pp. 138–144.

https://arxiv.org/pdf/1608.05786.pdf
https://arxiv.org/pdf/1608.05786.pdf
https://www.research-collection.ethz.ch/handle/20.500.11850/214143
https://www.research-collection.ethz.ch/handle/20.500.11850/214143
https://goo.gl/tBbS9G
https://www.vicon.com
https://www.vicon.com
http://optitrack.com/
http://optitrack.com/
https://www.qualisys.com/
https://www.qualisys.com/
https://wiki.ros.org/xacro
https://github.com/ethz-asl/rotors_simulator/issues/423
https://github.com/imrasp/LearnVI_Drone/issues/1#issuecomment-350726256
https://github.com/imrasp/LearnVI_Drone/issues/1#issuecomment-350726256
https://github.com/ethz-asl/kalibr/issues/63
https://github.com/ethz-asl/kalibr/issues/63
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
https://github.com/ethz-asl/mav_comm

CrazyS: a software-in-the-loop simulation platform 33

64. S. Islam, M. Faraz, R. K. Ashour, G. Cai, J. Dias, and L. Seneviratne, “Adaptive sliding mode
control design for quadrotor unmanned aerial vehicle,” in 2015 International Conference on
Unmanned Aircraft Systems, 2015, pp. 34–39.

65. Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive Control of Quadrotor UAVs:
A Design Trade Study With Flight Evaluations,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 4, pp. 1400–1406, 2013.

66. A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual Inertial Odometry Swarm: An
Autonomous Swarm of Vision-Based Quadrotors,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1801–1807, 2018.

67. A. S. Vempati, M. Kamel, N. Stilinovic, Q. Zhang, D. Reusser, I. Sa, J. Nieto, R. Sieg-
wart, and P. Beardsley, “PaintCopter: An Autonomous UAV for Spray Painting on Three-
Dimensional Surfaces,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2862–2869,
2018.

68. O. Dunkley, J. Engel, J. Sturm, and D. Cremers, “Visual-Inertial Navigation for a Camera-
Equipped 25g Nano-Quadrotor,” in IEEE International Conference on Intelligent Robots and
Systems, 2014, pp. 1–2.

69. L. Campos-Macı́as, D. Gómez-Gutiérrez, R. Aldana-López, R. de la Guardia, and J. I. Parra-
Vilchis, “A Hybrid Method for Online Trajectory Planning of Mobile Robots in Cluttered
Environments,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 935–942, 2017.

70. S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning quadrotor
dynamics using neural network for flight control,” in IEEE Conference on Decision and
Control, 2016, pp. 4653–4660.

71. L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle avoidance
for micro air vehicles using disparity space,” in 2014 IEEE International Conference on
Robotics and Automation, May 2014, pp. 3242–3249.

72. T. Field, R. Diankov, I. Sucan, and J. Kay, “COLLADA URDF,” ROS Wiki, 2018. [Online].
Available: http://wiki.ros.org/collada urdf

73. MathWorks, “Robotics System Toolbox,” MathWorks official website. [Online]. Available:
https://www.mathworks.com/products/robotics.html

74. ——, “Connect to a ROS-enabled Robot from Simulink,” MathWorks official web-
site. [Online]. Available: https://it.mathworks.com/help/robotics/examples/connect-to-a-
ros-enabled-robot-from-simulink.html

75. ——, “Install Robotics System Toolbox Add-ons,” MathWorks official website. [On-
line]. Available: https://it.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-
support-packages.html

76. ——, “Create Custom Messages from ROS Package,” MathWorks official website. [On-
line]. Available: https://it.mathworks.com/help/robotics/ug/create-custom-messages-from-
ros-package.html

77. G. Silano, “CrazyS wiki,” GitHub. [Online]. Available: https://github.com/gsilano/CrazyS/
wiki/Interfacing-CrazyS-through-MATLAB

78. ——, “Crazyflie hovering example by using the Robotics System Toolbox.” YouTube,
2018. [Online]. Available: https://youtu.be/ZPyMnu7A11s

79. MathWorks, “Generate a Standalone ROS Node from Simulink,” MathWorks official
website. [Online]. Available: https://it.mathworks.com/help/robotics/examples/generate-a-
standalone-ros-node-in-simulink.html

80. G. Silano, “Crazyflie 2.0 hovering example when only the ideal odometry sensor is in the
loop,” YouTube, 2018. [Online]. Available: https://youtu.be/pda-tuULewM

81. ——, “Crazyflie 2.0 hovering example when disturbances act on the drone,” YouTube,
2018. [Online]. Available: https://youtu.be/sobBFbgkiEA

82. ——, “Crazyflie 2.0 hovering example when the state estimator and the on-board sensors are
taking into account,” YouTube, 2018. [Online]. Available: https://youtu.be/qsrYCUSQ-S4

http://wiki.ros.org/collada_urdf
https://www.mathworks.com/products/robotics.html
https://it.mathworks.com/help/robotics/examples/connect-to-a-ros-enabled-robot-from-simulink.html
https://it.mathworks.com/help/robotics/examples/connect-to-a-ros-enabled-robot-from-simulink.html
https://it.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-support-packages.html
https://it.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-support-packages.html
https://it.mathworks.com/help/robotics/ug/create-custom-messages-from-ros-package.html
https://it.mathworks.com/help/robotics/ug/create-custom-messages-from-ros-package.html
https://github.com/gsilano/CrazyS/wiki/Interfacing-CrazyS-through-MATLAB
https://github.com/gsilano/CrazyS/wiki/Interfacing-CrazyS-through-MATLAB
https://youtu.be/ZPyMnu7A11s
https://it.mathworks.com/help/robotics/examples/generate-a-standalone-ros-node-in-simulink.html
https://it.mathworks.com/help/robotics/examples/generate-a-standalone-ros-node-in-simulink.html
https://youtu.be/pda-tuULewM
https://youtu.be/sobBFbgkiEA
https://youtu.be/qsrYCUSQ-S4

34 Giuseppe Silano et al.

83. M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband range measurements
with accelerometers and rate gyroscopes for quadrocopter state estimation,” in IEEE Inter-
national Conference on Robotics and Automation, 2015, pp. 1730–1736.

84. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadro-
tors,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2520–
2525.

85. Travis CI, GMBH, “TravisCI official website,” 2018. [Online]. Available: https:
//travis-ci.org/

86. F. Duvallet, “ROS package continuous integration using Travis-CI repository,” 2018.
[Online]. Available: https://github.com/felixduvallet/ros-travis-integration

87. G. Silano, “ROS TravisCI Integration pull request,” 2018. [Online]. Available: https:
//github.com/felixduvallet/ros-travis-integration/pull/12

88. Travis CI, GMBH, “Getting started with TravisCI,” 2018. [Online]. Available: https:
//docs.travis-ci.com/user/getting-started/

Authors’ Biographies

Giuseppe Silano received the bachelor’s degree in computer engineering (2012) and
the master’s degree in electronic engineering for automation and telecommunica-
tion (2016) from the University of Sannio, Benevento, Italy. In 2016, he was the
recipient of a scholarship entitled “Advanced control systems for the coordination
among terrestrial autonomous vehicles and UAVs”. Actually, he is a Ph.D. student
at the University of Sannio since 2016. His research interests are in simulation and
control, objects detection and tracking from images, state estimation, and planning
for micro aerial vehicles. He was among the finalists of the “Aerial robotics con-
trol and perception challenge”, the Industrial Challenge of the 26th Mediterranean
Conference on Control and Automation (MED’18). Mr. Silano is a member of the
IEEE Control System Society and IEEE Robotics and Automation Society.

Luigi Iannelli received the master’s degree (Laurea) in computer engineering from the
University of Sannio, Benevento, Italy, in 1999, and the Ph.D. degree in informa-
tion engineering from the University of Napoli Federico II, Naples, Italy, in 2003.
He was a guest researcher and professor at the Department of Signals, Sensors, and
Systems, Royal Institute of Technology, Stockholm, Sweden, and then a research
assistant at the Department of Computer and Systems Engineering, University of
Napoli Federico II. In 2015, he was a guest researcher at the Johann Bernoulli Insti-
tute of Mathematics and Computer Science, University of Groningen, Groningen,
The Netherlands. In 2004, he joined the University of Sannio as an assistant pro-
fessor, and he has been an associate professor of automatic control since 2016. His
current research interest include analysis and control of switched and nonsmooth
systems, stability analysis of piecewise-linear systems, smart grid control and ap-
plications of control theory to power electronics and unmanned aerial vehicles. Dr.
Iannelli is a member of the IEEE Control System Society, the IEEE Circuits and
Systems Society, and the Society for Industrial and Applied Mathematics.

https://travis-ci.org/
https://travis-ci.org/
https://github.com/felixduvallet/ros-travis-integration
https://github.com/felixduvallet/ros-travis-integration/pull/12
https://github.com/felixduvallet/ros-travis-integration/pull/12
https://docs.travis-ci.com/user/getting-started/
https://docs.travis-ci.com/user/getting-started/

	Lecture Notes in Computer Science
	Introduction
	Crazyflie 2.0 nano-quadcopter
	Dynamical model
	Flight control system
	Reference generator
	On-board control system

	State estimation
	Complementary filter
	IMU sensor model

	Tutorials
	Simulator setup
	Ubuntu with ROS
	Installing CrazyS from source

	Hovering example
	Simulator description
	Model description and simulation

	Developing a custom controller
	Robotics System Toolbox
	ROS integration

	Continuous integration system

	Conclusion and future work

