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Power Line Inspection Tasks with Multi-Aerial Robot Systems via
Signal Temporal Logic Specifications

Giuseppe Silano1 , Tomas Baca1 , Robert Penicka1 , Davide Liuzza2 , and Martin Saska1

Abstract—A framework for computing feasible and con-
strained trajectories for a fleet of quad-rotors leveraging on Sig-
nal Temporal Logic (STL) specifications for power line inspection
tasks is proposed in this paper. The planner allows the formu-
lation of complex missions that avoid obstacles and maintain
a safe distance between drones while performing the planned
mission. An optimization problem is set to generate optimal
strategies that satisfy these specifications and also take vehicle
constraints into account. Further, an event-triggered replanner is
proposed to reply to unforeseen events and external disturbances.
An energy minimization term is also considered to implicitly
save quad-rotors battery life while carrying out the mission.
Numerical simulations in MATLAB and experimental results
show the validity and the effectiveness of the proposed approach,
and demonstrate its applicability in real-world scenarios.

Index Terms—Task and Motion Planning, Multi-Robot Sys-
tems, Aerial Systems: Applications

I. INTRODUCTION

OVER the last two decades, global energy demand has
increased rapidly due to demographic and economic

growth. This has created new challenges for electricity supply
companies, which are constantly looking for new solutions to
minimize the frequency of power outages. Power failures are
particularly critical when the environment and public safety
are at risk, e.g., for hospitals, sewage treatment plants and
telecommunication systems. One of the major causes of a
power outage is damage to transmission lines, usually due to
high winds, storms, or inefficient maintenance activities [1].

Nowadays, the most common strategy for reducing energy
interruptions is to schedule periodic inspections using manned
helicopters equipped with multiple sensors. Data are captured
over thousands of kilometers by experienced crews for sub-
sequent processing. There are two major drawbacks to this
approach: first, flights are dangerous for operators who have to
fly close to power towers; second, the inspection is extremely
time-consuming and expensive ($1,500 for a one-hour flight)
and is prone to human error [2], [3].
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Multiple solutions have been investigated in the literature
for automating this task. Unmanned Aerial Vehicles (UAVs)
and Rolling On Wire (ROW) robots [3] have been proposed
as valuable solutions to replace helicopters within the process.
The most promising and the most flexible solution is to use
UAVs that can perform various levels of inspection depending
on the wing types and the task of interest [1].

However, the use of UAVs to achieve these tasks is partic-
ularly challenging, due to the strong electromagnetic interfer-
ence produced by power lines, and the presence of obstacles
along the line [2]. Accurate task planning is therefore needed
to mitigate such issues and to accomplish the assigned mission
safely. Temporal-Logic (TL) can be of help by providing a
powerful mathematical tool for the automatic design of feed-
back control laws that meet complex temporal requirements. In
particular, Signal Temporal Logic (STL) [4], [5] can be used to
describe planning objectives that are more complex than point-
to-point planning algorithms [6]. This approach leverages on
the definition of quantitative semantics [7], [8] for TLs to
interpret a formula w.r.t. a discretized abstraction of the robot
motion modelled as a finite transition system. The result is
an optimization problem with the goal of maximizing a real-
valued metric (called robustness) that denotes how strongly a
specification is satisfied or violated.

A. Related works
As detailed in [2], [9], there are three main challenges for

UAVs inspecting power lines: (i) visual servoing to ensure
power line tracking and autonomous navigation; (ii) obstacle
detection and avoidance to prevent possible collisions with
the towers and obstacles along the path; (iii) robust control
to provide high stability and positioning, hence allowing for
close-up inspections.

Much of the state-of-the-art focuses on the first two prob-
lems. Some works [2], [10] propose new methods for electric
tower detection and image segmentation. Others deal with
the detection of possible mechanical faults or damages to
isolation material [3], [9]. In this case, a highly desired
feature is a control strategy that enables trajectories to be
obtained not only for a single vehicle, but possibly for a
fleet cooperating at the same time, in the same area, while
avoiding obstacles and possible crashes and respecting the
given mission specifications and time bounds.

Other approaches focus on the endurance of the drone
mission as a way to maximize the exploration within its battery
life. Solutions have been proposed for performing cooperative
aerial coverage path planning with a multi-UAV system [2],
[11]. However, these problems do not usually take into con-
sideration the dynamics of the drone or physical constraints
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on vehicles. They, therefore, do not offer guarantees on the
feasibility of the path and on the DOFs of the vehicle motion.
Often, the proposed solution is an extension of the well-known
Traveling Salesman Problem [11] which, being an NP-hard
problem, easily becomes unsolvable within a reasonable time
when the complexity increases exponentially by the number
of vehicles and variables.

As regards the trajectory planning problem for a multi-
robot system, especially for quad-rotors, several approaches
have been investigated in the literature [12]–[14]. Most of the
solutions rely on an abstract grid-based representation of the
environment [15] or on abstract dynamics of the agents com-
bining a discrete planner with a continuous trajectory genera-
tor [14]. Others propose centralized multi-agent path planning
methods using relative safe flight corridors to find feasible
trajectories for the agents [16]. Although these approaches can
compute collision-free trajectories for a large number of agents
in a short time, they do not offer guarantees that the aircraft
will comply with the physical constraints or perform the task
in a given time window. On the other hand, whether the
model of quad-rotors is considered [13], the solutions rely on
information sharing between agents, making them difficult to
achieve in presence of electromagnetic interference, such as in
power line inspection tasks. Moreover, even when the planning
algorithms demonstrate computational efficiency [14], they do
not provide any reference regarding velocity and acceleration,
leaving the controller to generate these signals.

Many of solutions use Linear Temporal Logic (LTL) as the
mission specification language to synthesize the optimization
problem without considering explicit time bounds on the
mission objectives [12]. Other solutions propose the use of
STL specifications to describe mission requirements without
the need to discretize the dynamics or the environment [17].
Unlike LTL, STL is equipped with qualitative and quantitative
semantics, meaning that it is not only able to assess whether
the system execution meets the desired requirements, but also
provides a measure of how well the requirements are being
met (i.e., a robustness function). Furthermore, STL semantics
takes the absolute time information explicitly into account,
therefore making it possible to plan when a given task has to
be executed in the context of the whole mission.

B. Contributions

In this paper, we propose a framework for encoding inspec-
tion missions for a fleet of quad-rotors as STL specifications.
Then, using the motion primitives defined in [18], we construct
an optimization problem to generate optimal strategies that
satisfy the specifications. The proposed approach generates
feasible dynamic trajectories accounting for the velocity and
acceleration constraints of the vehicles, avoiding obstacles and
maintaining a safe distance between drones, while complying
with the specifications for the mission. An event-triggered re-
planning strategy is also proposed to account for disturbances
and unforeseen events along the tracking. The optimization
problem is reshaped to compute the feasible path to reconnect
the drone to the previously computed optimal offline solution.
In addition, a minimum energy problem is set up to implic-

itly prevent the quad-rotors from draining the battery while
carrying out the mission specification successfully.

The advantages are twofold: (i) the full expressiveness of
the STL formulas allows explicit time requirements to be taken
into consideration, making the framework easy to reuse and
customize for applications of interest; (ii) thanks to the motion
primitives, the proposed approach can generate trajectories in
accordance with pre-set velocity and acceleration constraints
that can be well-tracked by lower-level controllers.

Numerical simulations achieved in MATLAB show the
validity of the proposed approach. Various scenarios were
considered for an evaluation of the trajectory generator per-
formance. A comparison between the proposed strategy and
an existing stat-of-the-art solution is given at this stage. In
addition, Gazebo simulations and real-experiments were used
to demonstrate the applicability of the method in a scenario
closer to the real implementation.

II. PROBLEM DESCRIPTION

The work presented here forms a part of the AERIAL-
CORE European project. The power tower inspection task is
considered. A multi-robot system carries out a detailed inves-
tigation of power equipment, looking for possible faults. The
visual examination outputs videos or pictures of towers, cable
installations, and their surroundings performing a preliminary
remote evaluation. The aim is to identify components that need
to be replaced.

We suppose that the UAVs operate in a known environment,
represented by a map that also includes the position of obsta-
cles and the power tower. Also, that the UAVs are equipped
with the necessary sensors and software for their own precise
localization and state estimation [19].

III. PRELIMINARIES

Let us consider a continuous-time dynamical system H and
its discrete time version xk+1 = f (xk,uk), where xk,xk+1 ∈
X ⊂ Rn are the current state and the next state of the
system, respectively, u ∈ U ⊂ Rm is the control input and
f : X×U → X is differentiable in both of the arguments. The
initial state is denoted by x0 and takes values from some initial
set X0⊂Rn. Let Ts ∈R≥0 and T ∈R≥0 be the sampling period
and the trajectory duration, respectively, so we can write the
time interval as the vector t = (0,Ts, . . . ,NTs)

> ∈RN+1, where
NTs = T and tk, k ∈ N≥0, denote the k-element of the vector
t. Therefore, given an initial state x0 and a finite control input
sequence u = (u0, . . . ,uN−1)

> ∈RN , a trajectory of the system
is the unique sequence of states x = (x0, . . . ,xN)

> ∈ RN+1.
Similarly to tk, with uk and xk we denote the k-element of
vector u and x, respectively.

A. Signal Temporal Logic
The trajectory generator is designed to satisfy a specification

expressed in STL [4], [5]. STL is a logic that allows the
succinct and unambiguous specification of a wide variety of
desired system behaviors over time, such as “The quad-rotor
reaches the goal within 10 time units while always avoiding
obstacles”. The semantics of STL are defined in [5] and is not
reported here for the sake of brevity.
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B. Robust Signal Temporal Logic
The presence of a dynamic environment, unforeseen events,

and external disturbances can affect the closed loop behavior
and the satisfaction of the STL formula ϕ . For this reason, it is
convenient to have a maneuverability margin in an attempt to
maximize the degree of satisfaction with the formula. This can
be formally defined and computed using the robust semantic
of temporal logic [4], [5], [8].

Definition 1 (Robustness): The robustness of an STL for-
mula ϕ relative to the system trajectory x at time tk is defined
via the following recursive formulas

ρpi(x, tk) = µi(xtk),
ρ¬ϕ(x, tk) = −ρϕ(x, tk),

ρϕ1∧ϕ2(x, tk) = min
(
ρϕ1(x, tk),ρϕ2(x, tk)

)
,

ρ�Iϕ(x, tk) = min
t′k∈[tk+I]

ρϕ(x, t′k),

ρ♦Iϕ(x, tk) = max
t′k∈[tk+I]

ρϕ(x, t′k),

ρϕ1Uϕ2(x, tk) = max
t′k∈[tk+I]

(
min

(
ρϕ2(x, t

′
k)
)
,

min
t′′k∈[tk,t′k]

(
ρϕ1(x, t

′′
k

))
,

where tk + I is meant here as the Minkowski sum between the
scalar tk and the interval I. In the above formulas, µi(xtk) is a
smooth function called predicate which results true if its value
is grater or equal than zero, negative otherwise. On example
for the robot case could be being inside a target region or
being outside an obstacle region, with regions described by a
certain number of predicates. All the other expressions define
operators acting on other STL subformulas, thus implicitly
describing the semantic in a recursive way. Further details
can be found in [4], [5], [8]. For simplicity, we will write
ρϕ(x) instead of ρϕ(x,0) when tk = 0. Also, we will say that
x violates the STL formula ϕ at time tk if ρϕ(x, tk) ≤ 0 and
that x satisfies ϕ if ρϕ(x, tk)> 0.

Thus, we can compute control inputs u by maximizing the
robustness over the set of finite state and input sequences x and
u, respectively. The obtained sequence u? is valid if ρϕ(x?, tk)
is positive, where x? and u? obey the dynamical system H.
The larger ρϕ(x?, tk) is, the more robust the behavior of the
system is.

Definition 2 (LSE Robustness) [15]: Let us consider c≥ 1,
the smooth approximation of the m-array max and min is

max(ρϕ1 , . . . ,ρϕm)≈
1
c

log

(
m

∑
i=1

ecρϕi

)
,

min(ρϕ1 , . . . ,ρϕm)≈−
1
c

log

(
m

∑
i=1

e−cρϕi

)
.

This log-sum-exponential (LSE) approximation is smooth,
and an analytical form of its gradient exists. This robustness
approximation approaches the true robustness values given
according to Def. 1 as c→ ∞. The larger c is, the greater
the accuracy of the approximation is.

IV. PROBLEM FORMULATION

In this section, we show how to generate trajectories for a
fleet of q quad-rotors starting from mission specifications ϕ .

Motion
Planner

ϕ

Ground Station
Tracking

Controller
UAV
Plant

1st quad-rotor
ωd1

Td1

x?1,u
?
1

ψ1

. . .

Tracking
Controller

UAV
Plant

qth quad-rotor
ωdq

Tdq

x?q,u?
q

ψq

Figure 1: Control scheme. The motion planner generates
the trajectories (x?i ,u?

i ) and the heading angles ψi, with
i = {1, . . . ,q}, for the q quad-rotors by using the STL mission
specifications ϕ . A tracking controller supplies the desired
angular velocities ωdi and thrust Tdi commands for the UAVs.

The motion planner is the result of an optimization problem
that outputs a global feasible path for the vehicles accounting
for their constraints. These paths are used as a reference by
the trajectory tracking controller that performs the inspection.
Figure 1 describes the overall system architecture.

A. Motion planner

The use of an STL robust semantic allows to synthesize the
motion planner, i.e., finding a control sequence for the q quad-
rotors that satisfies a given STL formula ϕ . Such a problem
is casted for each quad-rotor as an optimization problem over
the control u = (u0, . . . ,uN−1)

> and state x = (x0, . . . ,xN−1)
>

sequences as follows

maximize
u,x

ρϕ(x)

s.t. xk+1 = f (xk,uk),∀k = {0,1, . . . ,N−1}
, (1)

where x0 = x0. Note that, in order to make this paper more
readable, in (1) we provided the optimization problem for each
quad-rotor, considering them decoupled. However, in the case
of coupling among some of them, such as for a minimum
distance to be always kept, problem (1) can be analogously
written taking into account the state and control sequences of
all the involved vehicles as decision variables, as well as their
dynamics. The coupling constraint can be embedded in the
STL formula used in the objective function.

As detailed in Def. 1, ρϕ uses non-differentiable functions
max and min. Therefore, the robustness of the STL formula
ϕ is itself non-differentiable as a function of the trajectory x
and the control inputs u. While mixed-integer programming
solvers [17], non-smooth optimizers, or stochastic heuris-
tics [20] can be used to find a solution for this problem,
the problem is NP-hard, and these approaches could fail with
the increase of the number of variables. However, as shown
in [15], a good approach for mitigating computational com-
plexity is to adopt a smooth approximation ρ̃ϕ of the robust
function ρϕ . One of the possible choices is LSE robustness
(Def. 2). In this case, the resulting optimization problem is
still non-convex, but smooth optimization techniques, such
as sequential quadratic programming, can be used to find a
local maximum. In this paper, such an approach is adopted to
compute the robustness value by using the smooth operator
defined in [15].
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To come up with a trajectory that satisfies the vehi-
cle constraints, the motion primitives defined in [18] have
been considered. The method allows for obtaining rapid
generation and feasibility verification of motion primitives
for quad-rotors. Let us define the state x and control u
sequences as xk = (p(1)

k ,v(1)k ,p(2)
k ,v(2)k ,p(3)

k ,v(3)k )> and uk =

(a(1)k ,a(2)k ,a(3)k )>, where p( j)
k , v( j)

k , and a( j)
k , with j = {1,2,3},

represent the vehicle’s position, velocity, and acceleration at
time instant k along the j-axis of the inertial frame, respec-
tively. The optimization problem (1) can be reformulated ap-
proximating the translational dynamics of the quad-rotor sepa-
rately along each j-axis with the splines S( j)(p( j)

k ,v( j)
k ,a( j)

k ) =

(p( j)
k+1,v

( j)
k+1,a

( j)
k+1)

> defined as

S( j) =

 α

120 t5
k +

β

24 t4
k +

γ

6 t3
k +a( j)

k t2
k +v( j)

k tk +p( j)
k

α

24 t4
k +

β

6 t3
k +

γ

2 t2
k +a( j)

k tk +v( j)
k

α

6 t3
k +

β

2 t2
k + γ tk +a( j)

k

 , (2)

where p( j)
0 = p( j)

0 , v( j)
0 = v( j)

0 , and a( j)
0 = a( j)

0 , while parameters
α , β , and γ that can be tuned to achieve a desired motion fixing
a combination of position, velocity, and acceleration at the
start and end points [18, Appx. A]. Such an approach ensures
compliance with safety requirements and intrinsically embeds
the gravity compensation [18, Sec. III]. Thus, the accelerations
a( j) are meant as the variations w.r.t. the vertical equilibrium
position.

Thus, the problem (1) can be reformulated replacing ρϕ(x)
with its smooth version ρ̃ϕ(x) considering for the mathemat-
ical formulation of the trajectory generator S( j). Moreover,
exploiting the decoupling of the drone dynamics into three
orthogonal axes [18, Sec. III-C], the original optimization
problem (1) can be split into three independent problems for
each j-axis, as follows

maximize
p( j),v( j),a( j)

ρ̃ϕ(p( j),v( j))

s.t. |v( j)
k | ≤ v( j)

max, |a( j)
k | ≤ a( j)

max,

eq. (2),∀k = {0,1, . . . ,N−1}

, (3)

where v( j)
max and a( j)

max are the desired maximum values of
velocity and acceleration along the motion, respectively. The
higher N is, the bigger the number of DOFs is. Consequently,
the computational burden for solving the optimization problem
increases. However, smaller values of N restrict the DOFs of
the motion planner, thus potentially providing a trajectory that
does not satisfy the STL specification. While the acceleration
a( j) is bounded in norm in the optimization problem (3), the
bound on the jerk is implicitly accounted by the chosen motion
primitives in [18].

B. Event-triggered replanner
As explained in the previous section, the adoption of motion

primitives allows to obtain feasible solutions for the quad-
rotors dynamics. It may be the case that, due to unexpected
large disturbances at runtime, a significant mismatch between
the planned trajectory and the quad-rotor state can be expe-
rienced. To cope with such an issue, here we introduce an
online event-based replanner.

Specifically, in our case we consider to obtain data only
at certain discrete time instances denoted by t̄. Let Te ∈ R≥0
and Tg ∈ R≥0 be the event-triggering period (multiple of the
sampling period Ts) and the “topic” waypoint period (a low-
rate sequence of the state x, with Tg >> Ts), respectively, so
we can write the discrete time instances t̄ and t̂ as the vectors
t̄ = (0,Te, . . . ,LTe)

> ∈RL+1 and t̂ = (0,Tg, . . . ,GTg)
> ∈RG+1,

where LTe ⊆ T and GTg ⊂ T . The term t̄l , l ∈ N≥0, denotes
the l-element of the vector t̄ ⊆ t, while t̂g, g ∈ N≥0, denotes
the g-element of the vector t̂⊂ t.

We also denote with p̃ the runtime trajectory position of the
drone. Notice that such trajectory could be different from the
optimal one p? due to disturbances acting at runtime.

At each time instant, say t̄l ∈ t̄ the condition |p̃l−pl |> η is
evaluated, with η > 0 a design parameter triggering threshold.
If such condition results true, then a trigger is generated
and the actual drone position is communicated to the ground
station. The latter performs an optimal replanning operation
over the time interval {t̄l , t̂g+1}, where t̂g+1 is the time
associated with the next topic position pg+1. In this way, the
feasible path between the triggering position pl and the next
position pg+1 is computed.

C. Energy-aware planner

The synthesized motion planner problem in Sec. IV-A can
be modified to ensure that the quad-rotors also save their
battery charge while carrying out their mission successfully.
The objective is to generate a trajectory for the q quad-rotors
that also takes into account the energy requirement of the
vehicles.

Let us define the decision variables εεεk = (εεε
(1)
k ,εεε

(2)
k ,εεε

(3)
k )>,

where εεε
( j)
k , with j = {1,2,3}, represents the bound on the

square norm of the quad-rotor acceleration (i.e., the control
input) as a proxy of the energy at time instant k along the
j-axis of the inertial frame. As discussed in [13], [14], the
optimal trajectory that deals with energy minimization can be
obtained by minimizing the positive semi-definitive quadratic
form εεε>k Qεεεk, where Q∈R3N×3N such that for all εεεk ∈R3N we
have that εεε>k Qεεεk ≥ 0. Thus, the optimization problem (3) can
be reformulated by adding a new term to the cost function and
bounding the system energy ‖a( j)>a( j)‖2. Namely we write:

maximize
p( j),v( j),a( j),εεε( j)

ρ̃ϕ(p( j),v( j))− εεε
( j)>Qεεε

( j)

s.t. |v( j)
k | ≤ v( j)

max, |a( j)
k | ≤ a( j)

max,

‖a( j)
k

>
a( j)

k ‖
2 ≤ εεε

( j)
k

>
εεε
( j)
k ,εεε

( j)
k ≥ 0,

eq. (2),∀k = {0,1, . . . ,N−1}

. (4)

The optimization problem both incorporates the satisfaction of
the STL formula ϕ and the energy saving to prevent that the
drones run out of battery while performing the mission, at the
expense of a reduction of the robustness ρϕ(x).

D. Control architecture

The control architecture is reported in Fig. 1. Starting from
mission and vehicle constraints, the Motion Planner solves
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UAV PlantAutopilot

Motion
Planner

Reference
Controller

Rate
Controller Actuators

Sensors

LocalizationState
Estimator

x?, u?

ψ

ωωωd , Td

100 Hz

τττd

≈ 1 kHz

R, ωωωζ , R, ωωω

100 Hz

Figure 2: The control architecture. The Motion Planner sup-
plies the trajectory (x?,u?) and the heading angle ψ to the
Reference Controller, which outputs the thrust Td and angular
velocities ωωωd for the embedded Rate Controller. A State
Estimator provides the UAV translation and rotation (ζ , R).

the optimization problem (3) supplying the trajectories (x?,u?)
and the heading angles ψ (provided as a constant reference for
each target) for the q quad-rotors. The trajectory generation is
run one-shot, i.e., once at time tk = 0, and the result is used
as reference by the tracking controller.

In Fig. 2 the designed control architecture based on [19]
is reported. This is divided into two parts: the high-level
layer, i.e., Reference Controller, which generates the desired
angular velocities ωωωd and thrust Td command signals, by using
the optimization outputs and the low-level layer, i.e., Rate
Controller, which computes the propellers speed τττd .

V. NUMERICAL RESULTS

To prove the validity and the effectiveness of the proposed
approach, we carried out numerical simulations in MATLAB,
extracting the needed STL specifications from the problem
description (see Sec. II). At this stage, the vehicle dynamics
and the trajectory tracking controller are not considered. The
Gazebo robotics simulator was used in the second step to
numerically verify the feasibility of the trajectories, exploit-
ing the advantages of Software-in-the-loop simulations [21].
In particular, Gazebo simulations were used to reduce the
probability of failures and to obtain a qualitative analysis of
the system behavior. The framework was coded using the
2019b release of MATLAB, with the optimization problem
formulated using CASADI library and NLP as solver. All
simulations were performed on a laptop with an i7-8565U
processor (1.80GHz) and 32GB of RAM running on Ubuntu
18.04. Videos with the experiments and numerical simulations
in MATLAB and Gazebo are available at http://mrs.felk.cvut.
cz/ral-power-tower-inspection.

A. Power tower inspection

The task objective is to reach target regions (i.e., interesting
areas to inspect) within the time interval [0,2T/3] while staying
within the workspace area ([14m× 18m× 23m]), avoiding
possible collisions with the power tower and the obstacles
along the path, and maintaining a safe distance (δmin) between
drones. The mission ends with the drones returning to the ini-
tial position within the time interval [2T/3,T ]. When the drones
reach the target regions, they start collecting images and videos
by simulating a data acquisition process. To minimize the
time required for inspection, the target regions are clustered

Sym. Value-PT Value-EA Unit
LSE scaling factor c 5 5 1
Drone safe distance δmin 3 3 m
Sampling period Ts 0.05 0.05 s
Maximum velocity v( j)

max 3 3 ms−1

Maximum acceleration a( j)
max 3 3 ms−2

Trajectory duration T 60 110 s

Table I: Optimization problem parameter values.

to find a balance among the number of vehicles available for
the inspection. However, advanced clustering algorithms may
be used accounting for the drones positions and the distance
between targets. For ease of experimentation, we considered
only two drones and four target regions, but this does not imply
a loss of generality of the approach. A numerical simulation
was also carried out in MATLAB to show the feasibility of the
problem as the number of drones and target regions increases
(see Fig. 4). The task objective can be encoded with STL
specifications as follows

i
hϕdis =�[0,T ]

(
‖ip− hp‖ ≥ δmin

)
,

ϕlri =
q
∧

k,i,k 6=i

(
k
iϕdis∧ k

ϕsafe∧ k
ϕws

)∧
♦[0,T ]

(( q/w
∧

k=1
k
ϕtr1∧ k

ϕtr3∧ q
∧

k=q/w+1

k
ϕtr2∧ k

ϕtr4

)
U[2T/3,T ]

(
q
∧

k=1
k
ϕhome

))
,

(5)
where i

hϕdis represents the safety distance requirement between
the i-th drone and the h-th drone, ϕws, ϕsafe, and ϕhome indicate
the workspace, safety (i.e., avoiding collisions with the power
tower and with obstacles along the path), and starting point
specifications, respectively, w is the number of clusters, while
ϕtr1, ϕtr2, ϕtr3, and ϕtr4 are the target regions.

The scenario is depicted in Figs. 3 and 4 along with the
obtained trajectories, obstacles and target regions (both the
obstacles and the target regions are modeled as polyhedra).
The 3D map was obtained from a three-dimensional terrestrial
laser scan of the environment and contains an observation
tower with a camera and some lights placed on top. These
were chosen as regions of interest for the inspection. The tower
is 20m in height with a radius of 3m. Table I reports the
optimization problem and the parameter values for the drone
considered in this paper, namely DJI F450. The optimization
took 21s to solve in the scenario with four target regions and
two drones, and 43s in the scenario with eight target regions
and four drones.

Gazebo simulations were performed to qualitatively and
quantitatively analyze the time advantages deriving from the
use of multiple drones to perform the inspection of a power
tower w.r.t. using only one drone. The scenario reported in
Fig. 4 was used as a testbed showing that the time required
for the inspection took 60s in the multi-UAV case and 255s
for the case of a single quad-rotor.

B. Energy-aware and event-triggered planner

As for the previous task, a pair of quad-rotors performs
an inspection of a single power tower. The power tower
inspection scenario was considered to also evaluate the perfor-
mance of the energy-aware and event-triggering replanner. The

http://mrs.felk.cvut.cz/ral-power-tower-inspection
http://mrs.felk.cvut.cz/ral-power-tower-inspection
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Figure 3: Power tower inspection scenario. Target regions are
represented in blue and green and reflect the navigation order,
respectively. Obstacles are depicted in red, while the starting
points are in magenta.

Figure 4: Power tower inspection scenario when considering
four drones and eight target regions.

results of the numerical simulations carried out in MATLAB
are reported in Figs. 5 and 6. As expected, the trajectories
obtained considering the energy requirements (see Fig. 5)
result closer to the obstacles than what happens when no
energy requirement is enforced (see Fig. 3). This fact is
motivated by the introduction of the energy saving cost term,
at the expense of the overall robustness (see Figs. 10 and 11).

To validate the performance of the event-triggered replanner,
we simulated the presence of two major unexpected distur-

Figure 5: Power tower inspection scenario considering the
energy-aware motion planner.

Figure 6: Power tower inspection scenario in case of unex-
pected large disturbances events at runtime. Arrows represent
the drones’ path along the mission. In black the deviation from
the original, in blue the new path computed by the replanner.
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Figure 7: Energy consumption profiles with two quad-rotors
performing the power tower inspection. From left to right:
“drone1” and “drone2” data when considering the “basic” (3)
and the energy-aware (4) motion planner, respectively.

bances deviating at runtime the quad-rotors from their original
planned paths. Once the replanner detects major deviations
from the planned trajectory (i.e., |p̃l − pl | > η), a partial
replanning is triggered online to bring back the quad-rotors
to next “topic” waypoint, as illustrated in Fig. 6. Then, the
result is used as reference for the tracking controller. The
optimization took less than 1 s for both disturbances.

Gazebo simulations were performed to evaluate the decrease
in energy when using the trajectories obtained with the energy-
aware motion planner, as shown in Fig. 11. As can be seen
from the graph, the velocity and acceleration signals are still
within the bounds and assume lower pick-values than Fig. 10.
However, smaller values of the robustness are obtained. In
Fig. 7 the energy consumption profiles are reported for the
two problem formulations.

C. Comparison with kinodynamic RRT?

As described in Sec. I-A, various state-of-the-art solutions
investigate the path planning problem in quad-rotors inspection
scenarios. However, not all of them are suitable for the inspec-
tion of power line infrastructure. This section aims to compare
the set up optimization problem (3) with the kinodynamic
RRT? proposed in [6]. Analogously to what done in our paper,
the incremental sampling approach in [6] finds quad-rotor
trajectories so as to remain in the workspace, avoid obstacles
and incorporate bounds on the control inputs. Analogously
to (2), the optimal trajectories are derived in terms of a solution
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Figure 8: Power tower inspection scenario when considering
the kinodynamic RRT?.

of a 2n2-degree polynomial. In this case the dynamics of the
quad-rotor is linearized around the hovering state constraining
the yaw (and its derivatives) to zero [6, eq. (31)]. The obtained
trajectories are reported in Fig. 8.

It is worth noticing that the kinodynamic RRT? was not
originally meant to work with multi-robot systems, making the
specification of a minimum distance between drones difficult.
To overcome this problem, we adapted [6] to the multi-robot
case via iterating on the various quad-rotors considering the
path obtained for the first {q− 1} quad-rotors as forbid-
den flight corridors for the q quad-rotor. Another important
difference is that the notion of time is not explicitly taken
into account. Besides this, mission specifications such as the
minimum distance between drones, cannot be easily codified
in the optimization problem. Furthermore, while the approach
in [6] adopts a linearized model of the quad-rotor, in our
case we do not impose such simplification. From a trajectory
viewpoint, this implies for [6] spikes and corners difficult to
follow in reality, possibly leading to sudden stresses on the
actuators to respond to rather fast changes of direction. This
results not only in possibly errors on trajectory tracking, with
the possibility of violating mission specifications and safety
requirements (e.g., the quad-rotor could collide with the power
tower), but also in high energy consumption that could harm
the mission. In addition to that, the demand on the onboard
control system is higher, since it requires top performances.
The algorithm took 8s to find a solution for the problem, while
the comparison between the drone and desired trajectory from
Gazebo simulations is depicted in Fig. 12.

VI. EXPERIMENTAL RESULTS

To evaluate and prove the applicability of the proposed
approach in real-world autonomous inspection tasks, exper-
iments with a DJI F450 quad-rotor were performed (see
Fig. 9). Real flight tests verified not only the fulfillment of
the STL specifications (i.e., ϕtr1, ϕtr2, ϕtr3, and ϕtr4), but
also the compliance with trajectory generation requirements
(i.e., maximum velocity v( j)

max and acceleration a( j)
max, and safe

distance δmin). The STL motion planner (see Sec. IV) was
implemented in MATLAB and the obtained trajectories were
sent to onboard PCs before running the experiment.

VII. CONCLUSIONS

This paper has presented a framework for encoding power
line inspection missions for a fleet of quad-rotors as STL
specifications. In particular, an optimization problem was set
to generate optimal strategies that satisfy such specifications
accounting also for vehicle constraints. Further, an event-
triggered replanner and an energy minimization problem have
been proposed to reply to external disturbances and to enhance
quad-rotors energy saving during the mission. The approach
enables the use of complex and rich task specifications with
automated trajectory generation. The solution potentially miti-
gates computational complexity explosion issues, thanks to the
use of a smooth approximation of the robust semantic. The
numerical simulations in MATLAB and Gazebo and also the
experimental results proved the validity and the effectiveness
of the proposed approach, demonstrating its applicability in
real world scenarios. Future work includes investigating better
solutions to cluster target regions accounting for drone po-
sitions and the distance between targets and extending the
event-triggered replanner with an online search of the best
partial reconnection trajectory or, if complete specification
satisfaction is no longer possible, the minimum violation
replanning.
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Figure 11: Position, linear velocity and acceleration and, mis-
sion requirements when considering the energy-aware motion
planner performing the power tower inspection.
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Figure 12: Drone positions when considering the kinodynamic
RRT?. Solid lines represent the computed path, while dashed
lines are the trajectories performed by the quad-rotors. Color
regions help understand when a part of the mission is accom-
plished in terms of the corresponding STL case.
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