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Abstract— This paper presents a formation control approach
for contactless Human-Swarm Interaction (HSI) using hand
gestures with a team of multi-rotor Unmanned Aerial Vehicles
(UAVs). The approach aims to monitor the safety of human
workers, especially those working at heights. In the proposed
scheme, one UAV acts as the leader of the formation and is
equipped with sensors for human worker detection and gesture
recognition. The follower UAVs maintain a predetermined
formation relative to the worker’s position, thereby providing
additional perspectives of the monitored scene. The use of hand
gestures allows the human worker to specify movements and
action commands for the UAV team, without the need for an ad-
ditional communication channel or specific markers including
the relative distance. Field experiments with three UAVs and a
human worker in a mock-up scenario showcase the effectiveness
and responsiveness of the proposed approach.

I. SUPPLEMENTARY MATERIAL

Video: http://mrs.felk.cvut.cz/hmri2023gestures

II. INTRODUCTION

In recent years, there has been a growing interest regard-
ing Unmanned Aerial Vehicles (UAVs), especially multi-
rotors. These platforms have gained attention due to their
agility, maneuverability, and ability to incorporate diverse
onboard sensors [1], [2]. Their modular design and versatility
make them well-suited for various applications, including
contactless interactions [3], physical engagements with the
environment [4], wireless communications [5], aerial film-
ing [6], surveillance, and search & rescue missions [7].

Moreover, UAVs have shown to be advantageous espe-
cially in difficult-to-access real-word environments, such as
work environments at heights [8], wind turbines [9], large
construction sites [10], and power transmission lines [11].
These scenarios often require specialized personnel, expen-
sive equipment, and dedicated vehicles. Introducing UAVs as
robotic co-workers [12] in these contexts brings numerous
benefits, including the ability to observe locations hard to
reach by a human, assist in tool handling, ensure workers’
safety, and alleviate the physical and cognitive workload on
operators [13], [14]. However, contactless interaction with
such UAVs is crucial for safety of both the operator and
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Fig. 1: Snapshot showing the gesture-based interaction between a
human worker and a team of three UAVs.

the robot and must be considered in the design of these
solutions [15].

Despite significant amount of research focused on collab-
orative and safe interactions involving human and ground
robots, studies involving UAVs have been relatively lim-
ited [16]. This gap becomes even more prominent when
considering the interaction between humans and multi-robot
teams, which is referred to as Human-Swarm Interaction
(HSI) [17]. Extensive research has been conducted in the
fields of computer vision and autonomous systems to en-
hance interaction with humans, enable UAVs to navigate
autonomously and avoid unsafe behaviors [17], [18]. Com-
puter vision studies have mostly focused on specific sce-
narios, exploring mechanisms for detecting faces [19], hand
gestures [20], and human body postures [21]. Some works
have combined computer vision with audio for multi-modal
interfaces [22] and investigated gaze detection for robot
selection [23]. Autonomous capabilities for UAVs have been
explored, including perception-aware control strategies [24],
formation control for visibility enhancement [6], [25], and
obstacle avoidance through optimization methods [3], [26].
These studies address collision avoidance with humans,
other UAVs, and static objects, as well as enhancing auton-
omy through local mapping [27].

However, these existing works tend to focus primarily on
either the vision component, neglecting or oversimplifying
the vehicle dynamics, or the control aspect, abstracting the
use of generic onboard sensors. Not considering both vision
and control aspects in the design of an HSI framework can
lead to severe failures. For instance, failures in estimating
human pose, caused by factors such as unbalanced camera
vibration or motion blur, can compromise system stability,
leading to crashes and potentially posing risks to the op-
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Fig. 2: System architecture overview showing data exchange between blocks using arrows, with highlighted layers.

erator. Importantly, none of the aforementioned studies has
addressed the challenge of integrating gesture recognition
modules within the UAV formation control scheme to en-
hance HSI while ensuring rapid responsiveness.

This paper presents a formation control approach for
contactless HSI using hand gestures with a team of multi-
rotor UAVs. The approach aims to monitor the status of
human workers, particularly those working at heights. In this
scenario, one UAV serves as the formation leader, equipped
with sensors for human worker detection and gesture recog-
nition. The follower UAVs maintain a predefined formation
relative to the worker’s position to provide additional views
of the scene. Hand gestures enable the human worker to com-
mand adaptation of various formation parameters, including
relative distance between UAVs, the distance to the worker,
relative altitude and direction of the view. Safety measures,
such as collision avoidance based on local map information,
are also implemented. The proposed approach is validated
through field experiments in a mock-up scenario involving
three UAVs and a human worker, as illustrated in Figure 1.

III. SYSTEM ARCHITECTURE

In this section, we present the system architecture, as
depicted in Figure 2, which consists of four layers: Detection,
Localization, Planning, and UAV Plant. The Detection block
interacts with the human worker and translates hand gestures
into commands for the UAV formation. An RGB-D camera
captures images, enabling human detection, tracking, and
gesture recognition (Sections III-A and III-B, rexpectively).
The Localization block combines sensor information from
the UAV plant, including the relative distance between the
drone and the worker, with data from the Detection block
and an Ultra Wide Bandwidth (UWB) module. This fusion
provides inputs for a Kalman filter, which estimates the
3D position and velocity of the human for the formation
controller (Section III-A). The Planning block generates
feasible trajectories for individual vehicles based on the UAV
formation leader’s status, the output of the gesture classi-
fier, the human’s state, and the status of other UAV team
members obtained through a wireless network (Sections III-

C and III-D). Finally, the UAV Plant receives and executes
the trajectories for precise flight [28].

A. Human detection and pose estimation
RGB images from the onboard camera are processed on-

the-fly for human detection and tracking, leveraging the
authors’ prior work on a Convolutional Neural Network
(CNN) [29]. A fast deep neural object detector based
on Single-Shot multibox Detector (SSD) [30] is employed in
combination with a custom LDES-ODDA visual tracker [31].
The output of this pipeline is a predicted bounding box of
the tracked human for each input image where the human
is visible, as shown in Figure 3. These bounding boxes
are then used for gesture recognition and human localiza-
tion. To maximize accuracy, the detector and the tracker
were pretrained on a manually annotated dataset1 and then
finetuned on videos of a human operator wearing safety
equipment, captured in diverse outdoor environments and
lighting conditions.

The estimation of the tracked human’s 3D position relies
on various inputs, including the relative direction to the
camera, the relative distance to the human, and the pose of
the UAV. To determine the relative direction of the human
from the camera, a pinhole camera model and calibrated
camera parameters are employed. Estimating the distance of
the human involves using three sources: (i) the apparent size
in the image based on the bounding box and known physical
dimensions of the human, (ii) the depth obtained by taking
the median of depth measurements from the stereo camera
within the bounding box, and (iii) the distance measurements
from the UWB system2 mounted on both the UAV and the
human worker. Additionally, the pose of the UAV is retrieved
from onboard sensors. To enhance the accuracy and stability
of the estimated 3D position of the human, the Kalman
filter is employed. This filter refines the estimated position
and also estimates the human’s velocity in the world frame,
utilizing a constant-velocity first-order point-mass motion
model.
1https://aiia.csd.auth.gr/open-multidrone-datasets
2https://www.terabee.com/shop/mobile-robotics/
terabee-robot-positioning-system
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Fig. 3: Example output of the developed gesture recognition
pipeline overlaid on the corresponding input video frame.

B. Gesture recognition

Gesture recognition is crucial in enabling visual interaction
from the human worker to the UAV formation through
gestures. Given a sequence of images captured by the RGB-
D camera of the leader UAV and the corresponding bounding
boxes of the tracked human (Section III-A), the developed
gesture recognition module predicts the type of gesture from
a predefined set (e.g., extend one arm to the side) [32],
[33]. These predicted gestures are then incorporated into the
formation control scheme, as described in Section III-C.

The gesture recognition pipeline consists of two sequential
modules. First, 2D human skeletons/poses are extracted using
our method described in [34] from the input image, which is
cropped by the corresponding bounding box of the tracked
human (see Figure 3). The last N outputs of the skeleton
extractor are stored in a FIFO buffer. This buffer is subse-
quently processed by our gesture classifier [35] based on a
lightweight Long Short-Term Memory (LSTM) architecture,
which outputs the type of the performed gesture.

The pipeline was trained on a large, manually annotated
dataset of gestures3 and finetuned to perform effectively on
aerial images, similarly to the human detector described in
Section III-A. The parameter N was empirically tuned to N =
9 based on the update rate of the camera and the pipeline’s
performance when running onboard the UAVs.

C. Formation control

The proposed system incorporates a leader-follower for-
mation scheme for formation control, building upon our
previous work on aerial filming [6]. In this scheme, depicted
in Figure 4, the UAVs maintain a predefined formation
relative to the position of the worker detected by the leader,
which is shared within the team (see Figure 2). Furthermore,
the UAVs ensure that their cameras are directed towards the
worker, continuously monitoring the human worker’s status.

The state ip of the i-th UAV in the formation is de-
scribed by its position coordinates ip = (i px,

i py,
i pz)

⊤ and
the orientation of its virtual camera, represented by the
heading iϕ and pitch iξ . A label i in the upper left indi-
cates a specific UAV within the team, with i = L referring
to the leader UAV, and i = {A,B, . . .Z}/{L} referring to

3https://aiia.csd.auth.gr/auth-uav-gesture-dataset
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Fig. 4: Illustration of the applied formation scheme for tracking
of the human worker while providing the view of the scene from
multiple directions and distances.

the follower UAVs. Based on the estimated pose of the
target T p = (T px,

T py,
T pz,

T ϕ)⊤, the desired pose of the
leader UAV Lp= (L px,

L py,
L pz,

Lϕ,Lξ )⊤ is computed. Given
the required observation angles in the horizontal and vertical
plane (Lβ ,Lγ) and the required distance to the target (Ld),
the desired state of the leader is given by

Lp = (T p⊤,0)⊤−


Ld cos

(
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)
cos

(
Lγ
)

Ld sin
(
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)

cos
(

Lγ
)

Ld sin
(
−Lγ

)
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Lγ

 . (1)

Similarly, the desired position of the follower UAVs, such
as follower A, Ap = (A px,

A py,
A pz,

Aϕ,Aξ )⊤, with required
observation distance Ad and angles Aβ and Aγ defined with
respect to leader UAV’s camera optical axis, is computed as

Ap = (T p⊤,0)⊤−
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(
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)
cos

(
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)
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)
cos

(
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)
Ad sin

(
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)
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 .

(2)
Note that T ϕ does not have to match the orientation of
worker’s body. It can coincide with the direction of estimated
motion or can be set to constant value.

The formation scheme, represented by eqs (1) and (2),
is applied to every pose on the prediction horizon using
the worker’s predicted trajectory and the leader’s planned
trajectory. These trajectories then serve as reference trajecto-
ries for a three-stage trajectory generation process depicted
in Figure 4. First, collision-free paths along the reference
trajectories are generated for each UAV using the map of the
environment. Next, safe corridors are computed along these
paths using a convex decomposition of free space [6]. Finally,
trajectory optimization is performed within each safe corridor
to obtain dynamically feasible, collision-free trajectories. The
teammates and their planned trajectories are included as
obstacles in the map to prevent inter-UAV collisions. This
trajectory generation pipeline is executed onboard each UAV
in a receding horizon manner, allowing for real-time response

https://aiia.csd.auth.gr/auth-uav-gesture-dataset


to dynamic environment. Detailed information about the
trajectory generation process can be found in [6].

The desired observation angles Aβ and Aγ , and distances
Ad can be set before the mission or adjusted during the flight
based on the gestures performed by the worker to achieve the
desired view of the scene. The dynamic changes based on
the gestures are executed in incremental steps. The trajectory
generation algorithm is designed to handle such step changes
and produce smooth and feasible trajectories.

D. Gesture processing and formation adaptation

The output of the gesture recognition pipeline undergoes
a processing step to improve the reliability of HSI by
prevention of undesired shape adaptation due to false positive
detections of gestures. During each iteration of the algorithm,
only the most recent valid measurements with prediction
confidence exceeding a predefined threshold Γc ∈ R>0 are
considered. The data older than a specified time threshold
tc ∈R>0 is filtered out to maintain the relevance of the mea-
surements to current state of the scene. From the remaining
set of measurements, the ratio fd ∈ [0,1] of the dominant
gesture is computed by determining the maximum number
of detections associated with a single gesture from the set of
gestures, excluding measurements in which no gesture was
detected.

If the computed ratio fd exceeds a predefined threshold
Πd ∈ [0,1], the command for adapting the formation pa-
rameter (see Section III-C) corresponding to the dominant
gesture is executed. However, a new command can only
be executed td ∈ R>0 seconds after the previous call to
prevent unwanted repeated updates based on the same set of
measurements. This improves the human worker’s control of
formation parameters updates and prevents the unintentional
shape adaptation. The values of Γc,Πd , tc, and td were cho-
sen through multiple real-world experiments, where various
initial conditions and sets of gestures were tested.

IV. EXPERIMENTAL RESULTS

The effectiveness and validity of the proposed system
were demonstrated through field experiments conducted us-
ing three UAVs4 in collaboration with a human worker
wearing a reflective safety vest. The following mapping
of gestures to the formation parameters was used in the
presented experiments: extend arm to side — increase Lβ ,
cross arms — decrease Lβ , raise arm upwards — increase
Lγ , put palms together — decrease Lγ . The increments and
decrements of Lβ and Lγ were set to 30◦ and 5◦, respectively.
The heading of the human worker T ϕ was supposed to be
constant, and the gestures were filtered using twenty most
recent measurements, tc = 20s, td = 5s, and Γd = 0.6.

During the experiments, the UAV team effectively main-
tained the desired distance and orientation relative to the
worker, ensuring safety and demonstrating the capability of
the proposed approach in real-world scenarios. Snapshots
of the experiment are shown in Figure 5, providing a

4For a detailed description of the hardware platforms see [36], [37].

(a) (e)

(b) (f)

(c) (g)

(d) (h)

raise arm upwards

cross arms

put palms together

extend arm to side

Fig. 5: Sequence of snapshots showing a team of UAVs following
a human worker (a)-(d) and adapting the relative view based on the
detected gestures (e)-(h).

visual representation of the UAV team following the worker
and adapting the view based on detected gestures. Videos
showcasing the real-world demonstration can be accessed
at the following link: http://mrs.felk.cvut.cz/
hmri2023gestures.

The conducted experiments highlight the potential of using
hand gestures for intuitive control and coordination of au-
tonomous systems. Thus, enabling safe and efficient Human-
Swarm Interaction in applications such as safety monitoring
and assistance to humans working in difficult-to-access en-
vironments.

V. CONCLUSION

In this paper, we introduced an approach for contact-
less Human-Swarm Interaction using hand gestures to control
a team of UAVs. The proposed approach enables safe and
efficient interaction between human workers and autonomous
aerial systems, offering benefits in real-world scenarios. The
integration of hand gestures as a control modality allows
human workers to command and adjust various formation
parameters such as relative direction and distance to the
worker. The system utilizes robust algorithms for human
worker detection and gesture recognition, ensuring accurate
and prompt response. Field experiments validated the effec-
tiveness of the approach, demonstrating successful formation
control based on detected hand gestures. This work shows
the potential for future research in gesture recognition algo-
rithms and tackling scalability challenges for larger swarm
formations.
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