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An educational simulation platform for GPS-denied Unmanned Aerial
Vehicles aimed to the detection and tracking of moving objects

Giuseppe Silano and Luigi Iannelli

Abstract— The main motivation of this work is to show, for
educational purposes, that the visual based object tracking
problem can be illustrated through the simulation-in-the-loop
approach: by using the MathWorksTM Virtual Reality Toolbox
together with Matlab R©, it is possible to simulate the behavior
of a drone in a 3D environment when detection and control
algorithms are run. Matlab VR is used due to the familiarity
that students have with. In this way the attention can be moved
to the classifier, the references generator and the trajectory
tracking control. Each block is decoupled and independent,
so it can be easily replaced with others thus simplifying the
development phase.

The virtual environment allows to test quickly the flight
control system, comparing and evaluating different plans, both
for indoor and outdoor scenarios. The system acquires frames
from the virtual world, searches for one or more target on
which it has been trained using machine learning techniques,
and it extracts information about the pose in order to apply a
trajectory control.

A simple case study has been presented in order to show the
effectiveness of the approach.

Index Terms— Visual servoing, UAV, vision based control,
GPS-denied, simulation-in-the-loop, educational.

I. INTRODUCTION

During the last ten years, much effort has been put into
the research field of (semi-)autonomous unmanned aerial
vehicles (UAVs). Indeed, even though many algorithms for
autonomous control and navigation exist, they are not usually
suitable for making UAVs work autonomously in constrained
and unknown environments (e.g., by using GPS, which is not
available indoors). Thus, by considering the strong increase
of the use of UAVs for inspection and surveillance purposes
(e.g., in suburban scenarios) and for detecting and tracking
arbitrary moving objects (e.g., for military operations), it
follows the need for tools that allow to understand what
it happens when some new applications are going to be
developed. The problem is that UAV systems are expensive,
not so easy to manage with (consider, for instance, the
outdoor scenario) and, sometimes, they can be also dan-
gerous in some way. For such reasons a complete software
platform that makes possible to test different algorithms for
UAV moving in a simulated 3D environment is more and
more important for the whole design process, as well as
for educational purposes. In this paper the objective will be
to describe a software, based on the Matlab R© computing
environment, where virtual reality rendering and detection
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and control algorithms can be verified and validated. Due
to the simple implementation and the limited possibility of
interfacing with dedicated tools, the proposed platform has
been meant as an educational tool, even though it can be
considered also as a starting point for the development of a
simulation-in-the-loop platform (see [1]) in the UAV field.

The specific domain of interest regards the autonomous
behavior of UAV that act according to image based visual
servoing [2]. Indeed, most of commercial applications using
UAVs as devices for data and video streaming towards a
central station, require the vehicles being remotely com-
manded by a supervisor (a human) that decides the next
action to do by looking at the camera images. The camera
extends the aircraft sensory capacity, and implements the
feedback information that is closed in the loop through
the (human) manual controller. An automatic control loop,
instead, is implemented when the UAV is directly driven
by an algorithm implementing the image-based visual ser-
voing [3], [4]. According to the camera configuration, we
can have two possibilities: the eye-in-hand (the camera is
rigidly attached to the UAV), and the eye-to-hand (the camera
has a fixed orientation in the workspace) [5]. For instance,
many commercial Micro Aerial Vehicles (MAVs), such as
the ARDrone 2.0 [6], adopt the eye-in-hand configuration.
In this paper we will consider a similar case study with an
eye-in-hand configuration.

We consider the UAV able to detect and track a spe-
cific object moving on the ground. Designing such kind
of aircraft/ground robot system is not a simple task since
many feedback control loops interact among them in order
to control a highly nonlinear dynamic system. Thus, it helps
a lot having a simple software platform able to perform
simulation-in-the-loop of the overall system where the com-
puter vision algorithms and the control laws are implemented
in the same environment that will be used for the virtual
world simulation. That allows the testing of visual servoing
under many different scenarios easily defined, so to have an
immediate and intuitive representation (3D animations) of
what can be achieved with the real application of interest.

II. SYSTEM DESCRIPTION

In order to simulate a scenario as much similar as to a real
world, the Matlab Virtual Reality Toolbox has been used.
The toolbox simulates a 3D world to observe the interaction
between complex dynamic systems and the surrounding
scenario. From such perspective the tool has been employed
for simulating the interaction of a drone following a car.
Given the particular scenario, we started from one of the



Fig. 1. Initial frame of the scenario considered in the paper.

examples available on the MathWorks platform (specifically
the vr octavia 2cars example) describing a quite detailed
model of the car dynamics where the car moves along a
non trivial path (see, Fig. 1).

We used an example already available from the standard
installation only because our interest was in the UAV dynam-
ics and control. We exploited the object oriented approach
so to minimize the development time for real applications.

Then, it has been added an external observer that rep-
resented the UAV. In Matlab VR the external observer has
six degrees of freedom: the spatial coordinates x, y, z, and
the angles yaw, pitch and roll. In this way it is possible to
simulate the behavior of a drone that moves in the virtual
environment and observes the car moving along the path. The
whole process is the following: images are updated according
to the position and the orientation of the Matlab VR external
observer (the UAV) with respect to the car; such images are
acquired and elaborated for getting information necessary in
order to detect the object (the car) and to run the control
strategy designed for tracking the moving object. The output
of the control algorithm consists into the actuation commands
that should be given to the observer (the drone) in order
to update its position and orientation. Here a further low
level feedback control loop is used. The overall scheme is
depicted in Fig. 2 with references to sections describing the
specific parts. The Simulink scheme in Fig. 3 models the
virtual world behavior. The car dynamics are simulated to
follow a given path as given in the block esp on in the
scheme (the orginal Matlab example was aimed to show
the ESP effects on the car dynamics). At each time step
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the steering angle, the brake system intensity, the car linear
velocity and position are computed. The data processed are
sent to the VR Visualization block that takes care of the car
movements in the virtual environment. The observer position
block represents the aircraft position (xd , yd and zd) in the
scenario. The rotation matrix block represents the direction
cosine matrix [15] used to obtain the necessary quaternion to
define the drone attitude in the virtual reality world (here we
used the Rodrigues’s formula [7]). Both blocks are updated
by the regulator at each frame (time step) during the entire
simulation.

Note that Matlab VR adopts a reference system slightly
different from the classic fixed reference frame OFI (see
Sect. IV). Figure 4 illustrates such difference: in particular,
axes are differently oriented and, furthermore, the virtual
world reference system is centered in the car center of grav-
ity, although the axes orientation is fixed. Those differences
are taken into account in all elaborations.

Finally, the scheme saves the current car position (xcar,
ycar and zcar), later on used for comparing the drone and
car trajectories, and frames of the virtual scenario observed
from the drone point of view. Those frames will be used, as
described in next sections, for pattern recognition.

III. VISION BASED TARGET DETECTION

The Viola & Jones algorithm [8] has been used for
recognizing the car along the path in order to obtain a fast
detection. Such algorithm, despite requiring more computa-
tional time than other algorithms [9] (e.g., SIFT and SURF
algorithms [10], [11]), it ensured the best performance for
the considered case study. During the classifier phase, much
time has been dedicated to the learning process. In this way
we were able to detect the target when it was in different
positions, too.

A. Classifier learning phase

A high number of images are needed in order to train the
classifier. The images are divided into two groups: positive
(that contain the target) and negative images. By following
as suggested in [12], we used a minimum number of 1000
positive images and at least 2000 negative images.

We wrote a Matlab script to minimize and automate the
frames acquisition and the computing phase. To this aim
we simulated the drone moving along a spiral trajectory
around the car parked in its initial state. The aircraft attitude
and position have been computed at each frame so that the
observer point described a trajectory along the sphere surface
as shown in Fig. 5.

Finally, the area bounding the car, also known as region of
interest (ROI), was selected using the Matlab tool Training
Image Labeler.

Figure 6 shows the detection results obtained using
the Haar cascade [9] and histogram of oriented gradients
(HOG) [13] features type. The car is only partially detected
in spite of the high images number used in the learning
process. Although there are no revelation errors, different
bounding boxes have been detected in the image. That is
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probably caused by the several image view points used
in the learning process. On the other hand, they introduce
enough “useful noise” to help the detection. Many tests have
been conducted in order to assess the true performance of
the algorithm. A video showing the results has been made
available [14].

B. Bounding box selection

The recognition of different bounding boxes requires an
algorithm in order to obtain a unique box surrounding the
target. A Matlab script computes the maximum and the
average bounding box, as shown in Fig. 7. The maximum
approach put more trust in the detection results while the
average approach tries to filter out the detection results. The
‘good’ choice depends on the particular used classifier. In our
case study the maximum bounding box has been chosen.

After that, the image (ximg, yimg) and the bounding box
(xbb, ybb) centroids are computed, as well as the distance

OFI YFI

ZFI

−XFI

XFI

OFVR XFVR

YFVR

ZFVR

−ZFVR

Fig. 4. The picture illustrates the classic fixed frame OFI (left) and the
corresponding virtual fixed OFV R (right) reference system.

vector between the centroids, so as described in [6] and
illustrated in Fig. 8.

IV. MODEL OF A HEX-ROTOR DRONE

In our study case we considered a drone with six rotors.
The development of a suitable attitude and position con-
troller for the hex-copter required an accurate dynamical
model to be derived. Classical Newtonian and Lagrange
modeling methods [15] can be applied. In our case we
used the Newtonian approach, the extensively used choice
for modeling traditional helicopters [16]. We introduced two
reference systems: the fixed-frame OFI (where FI stand for
fixed inertial), also called inertial frame, and the body-frame
OABC (where ABC stands for Aircraft Body Center) that is
fixed in the aircraft center of gravity and oriented according
to the aircraft attitude, see Fig. 9.

The resulting model consists of six equations for the
system dynamics (eqs. (1)) and four equations describing
the inputs to the system (eqs. (3)) with c· and s· denoting
cos(·) and sin(·) functions, respectively.

Jxx φ̈d = θ̇d ψ̇d (Jyy− Jzz)− Jr θ̇d Ωr−K f ax φ̇ 2
d +U2

Jyy θ̈d = φ̇d ψ̇d (Jzz− Jxx)+ Jr φ̇d Ωr−K f ay θ̇ 2
d +U3

Jzz ψ̈d = θ̇d φ̇d (Jxx− Jyy)−K f az ψ̇2
d +U4

mẍd =−k f tx ẋd +
(
cφd cψd sθd + sφd sψd

)
U1

mÿd =−k f ty ẏd +
(
cφd sθd sψd − sφd cψd

)
U1

mz̈d =−k f tz żd−g+ cφd cθd U1

(1)



The first three equations describe the angular accelerations
of the aircraft while the remaining three equations describe
the UAV linear acceleration in the direction of x, y and
z, respectively. The parameter Jr is the inertia for each
rotor while Ωr (eq. (2)) is the overall propeller speed.
Jxx, Jyy, Jzz, K f ax, K f ay, K f az, K f tx, K f ty and K f tz are the
inertial components, the propeller drag coefficients and the
aerodynamic force constants about the x-axis, y-axis and z-
axis, respectively. The total mass of the hex-copter is m and

Ωr =−Ω1 +Ω2−Ω3 +Ω4−Ω5 +Ω6. (2)

The system inputs are reported in eqs. (3), where U1 repre-
sents the throttle command (that modifies żc), U2 represents
the roll angle command (that modifies φ̇c), U3 is the pitch
angle command (that modifies θ̇c), while U4 represents the
yaw rate of change command (that modifies ψ̇c).

U1 = b
(
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2
2 +Ω
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2
6

)
(3a)

U2 = bl
[
−Ω

2
2 +Ω

2
5 +

1
2

(
−Ω

2
1−Ω

2
3 +Ω

2
4 +Ω

2
6

)]
(3b)

U3 =
bl
√

3
2

(
−Ω

2
1 +Ω

2
3 +Ω

2
4−Ω

2
6

)
(3c)

U4 = d
(
−Ω
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(3d)

Finally, l is the distance to the center of gravity while b and
d are the thrust and drag factor in hovering, respectively.
Increasing or decreasing the speed of the propellers together
will determine the altitude change in position and velocity,
while varying the speed of two propellers (Ω1 and Ω6 or Ω3
and Ω4) will cause the aircraft to tilt about the y-axis which
is denoted as pitch angle θ . Similarly varying the speed of
the three propellers (Ω1, Ω2 and Ω3, or Ω4, Ω5 and Ω6) will
cause the aircraft to tilt about the x-axis which is denoted as
roll angle φ . Finally, the vector sum of the reaction moment
produced by the rotation of Ω1, Ω3 and Ω5 and the reaction
moment produced by the rotation of Ω2, Ω4 and Ω6 will
cause the hex-rotor to spin about its axis (z-axis) which is
denoted as yaw angle ψ . These are the six system DOFs
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Fig. 5. Drone trajectory around the car during frame acquisition. In red
the drone initial position and in green its final position. The car is indicated
by the yellow point.

consisting of the position xd , yd and zd and the orientation
ψd , φd and θd . Further details on the model are reported
in [15], together with the parameters values, as well.

V. FLIGHT CONTROL SYSTEM

The flight control system has been split into parts: a
references generator, that uses the information extracted from
the images to generate the path to follow, and the integral
backstepping (IB) controller described in [17]. Figure 2
describes the whole control scheme.

A. Reference generator

The references generator is decomposed into two parts:
the attitude and the position controller, both illustrated in
Fig. 10. In order to minimize the distance vector, the attitude
controller tunes the yaw (ψr) and pitch (θr) angles, while roll
(φr) remain equal to zero, trying to overlap the image (ximg,
yimg) and the bounding box (xbb, ybb) centroids. The angles
are later used to tune the reference position xr, yr, zr with
respect to the virtual world reference (see, Fig. 4).

The references generator takes into account the camera
initial position and its movements in the virtual environment.

The PIψr and PIθr outputs are the variations ∆ψr and ∆θr
of ψr and θr that are used by the IB controller as path
reference (see Fig. 12) and to compute xr (see Fig. 10),
respectively. Similarly it happens for the variables yr and
xr, that need the aircraft initial positions yinit and xinit. The
values ψrefr and θrefr , both equal to zero, are the attitude
references that the UAV assumes during the target tracking.
Finally, the error signal esurface is given by the difference
between the bounding box area (wbb ·hbb, aka areames) and
the reference area (arearef) given by the sample mean of the
images uses during the learning process. It is used in order
to tune the distance zr.

Figure 11 reports the trajectories followed by the car and
the UAV while a further video [19] has been made available
for showing the results of the proposed approach.

B. Integral Backstepping controller

The integral backstepping of [18] has been used as the
controller for the trajectory the path tracking. It combines the

Haar cascade HOG

Fig. 6. Detection results obtained using the Haar cascade (left) and
histogram of oriented gradients (right) features type.
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Fig. 7. Bounding box selection algorithm.

robustness against disturbances offered by backstepping and
robustness against model uncertainties offered by the integral
action. The scheme in Fig. 12 summaries as the controller
system works.

The trajectory control strategy works for making the
aircraft attitude

(
φrefIB and θrefIB

)
to follow the reference

generator outputs (zr and xr). The reference signals φrefIB

and θrefIB are computed (see Fig. 12) as:

θrefIB =
m
U1

[(
1− c2

1 +λ1
)

ex +(c1 + c2)exIB

− c1λ1

∫ t

0
ex(τ)dτ

]
(4a)

φrefIB =−
m
U1

[(
1− c2

3 +λ2
)

ez +(c3 + c4)ezIB

− c3λ2

∫ t

0
ez(τ)dτ

]
, (4b)

with

exIB(t) = λ1

∫ t

0
ex(τ)dτ + c1ex(t)+ ėx(t) (5a)

ezIB(t) = λ2

∫ t

0
ez(τ)dτ + c3ez(t)+ ėz(t), (5b)

and

ex = xr− xd (6a)
ez = zr− zd , (6b)

where (c1, c2, c3, c4, λ1 and λ2) are positive constants.
The following numerical values have been chosen: λ1 = 1,

λ2 = 1, c1 = 2, c2 = 0.5, c3 = 2 and c4 = 0.5.
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C. Numerical results

The overall system has been simulated in Matlab and the
results illustrate in a direct way (you can find the video [20])
how the system performs. In the middle of the simulation (at
13.08s) the car speed becomes much higher than the drone
speed causing an excessive UAV rolling. Due to the eye-in-
hand configuration, the target comes out of the camera view
and it is lost.

Those results demonstrated as the system works and the
limit of the eye-in-hand configuration, as well. Anyhow, the
software platform allowed to test the complex system com-
posed by computer vision and control algorithms interacting
among them and with the moving objects dynamics.

VI. CONCLUSION

In this work a well-known computing environment (Mat-
lab) has been used implement the simulation of a complex
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virtual world, so to show the effects of computer vision and
control strategies aimed to detect and track moving objects.
In this way it has been proven the effectiveness of the
approach for educational purposes, so that interested students
might work in a known environment by developing their own
algorithms in a easy way. Nevertheless, in our opinion the
work could constitute the first step towards the development
of a more structured platform aimed for the simulation-in-
the-loop of such kind of applications. The idea is to rely
on more flexible and dedicated solution like V-REP [21] or
Gazebo [22], [23]. In particular, the latter one will provide

also the advantages of an open source solution.
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