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A Signal Temporal Logic Planner for Ergonomic
Human–Robot Collaboration
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Abstract— This paper proposes a method for designing
human-robot collaboration tasks and generating correspond-
ing trajectories. The method uses high-level specifications,
expressed as a Signal Temporal Logic (STL) formula, to
automatically synthesize task assignments and trajectories. To
illustrate the approach, we focus on a specific task: a multi-
rotor aerial vehicle performing object handovers in a power
line setting. The motion planner considers limitations, such as
payload capacity and recharging constraints, while ensuring
that the trajectories are feasible. Additionally, the method
enables users to specify robot behaviors that take into account
human comfort (e.g., ergonomics, preferences) while using
high-level goals and constraints. The approach is validated
through numerical analyzes in MATLAB and realistic Gazebo
simulations using a mock-up scenario.

Index Terms— Aerial Systems: Applications, Multi-Rotor
UAVs, Human-Aware Motion Planning.

I. INTRODUCTION

In the field of robotics, Aerial Robots (ARs) and Multi-
Rotor Aerial Vehicles (MRAVs) have gained significant
attention in recent years due to their impressive agility,
maneuverability, and ability to be equipped with a variety
of onboard sensors [1]. Their modular design and versatility
have made them suitable for a wide range of applications, in-
cluding those which involve either contactless [2] or physical
interaction with their surroundings [3].

There are many real-world examples where the use of
aerial robots is advantageous, such as for work environments
at heights, wind turbines, large construction sites, or power
transmission lines [4], [5]. These types of settings often
require specialized and trained personnel to use expensive
equipment and special vehicles. The use of aerial robots
as robotic co-workers [6], [7] in these scenarios can, for
example, facilitate tasks by flying to the target location and
carrying tools, reducing the physical and cognitive load on
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human operators, etc.. However, in order to realize these
benefits, it is important to consider human ergonomics and
safety [8] when designing aerial robots, particularly multi-
rotors.

Despite the potential of MRAVs to work closely with
human operators, their use in such scenarios is still lim-
ited. In contrast, there is a wealth of research on Human-
Robot Interaction (HRI) involving ground robots and human
partners [9]. For example, previous studies have looked at
the use of manipulators to assist humans in handling heavy
or bulky objects, or during assembly tasks [10]. The issue
of object handover has also been extensively studied in the
literature [11].

Therefore, to allow ARs to effectively collaborate with
human workers and address critical ergonomic and safety
concerns while additionally minimizing the physical and
cognitive demands on human operators, advanced task and
motion planning techniques are required. Temporal Logic
(TL) can fulfill this role by providing a mathematical frame-
work for expressing complex specifications that combine
natural language commands with temporal and Boolean op-
erators [12]. In particular, Signal Temporal Logic (STL) [13]
is endowed with a metric called robustness, which not
only allows one to determine whether a system’s execution
satisfies certain requirements, but also provides a measure
of how well these requirements have been satisfied. This
leads to an optimization problem aimed at maximizing the
robustness score, thereby generating the optimal feasible
trajectory for the system that meets desired specifications.

In this paper, we present an MRAV motion planner that
leverages STL specifications to facilitate ergonomic human-
robot collaboration. As a motivating example, we consider
the task of an MRAV performing object handovers in a
power line scenario, as depicted in Figure 1. The mission
requirements are expressed as an STL formula. We maximize
its robustness by formulating a nonlinear non-convex max-
min optimization problem. To address the complexity of this
nonlinear optimization, we employ a hierarchical approach
that first solves an Integer Linear Programming (ILP) prob-
lem, and then passes the result to the final STL optimizer.

A. Related work

The process of handover typically encompasses multiple
stages, including the approach, reach, and transfer phases,
as noted in previous studies [6], [7]. Many researchers
have typically studied each phase individually, but there are
a few notable exceptions. In [14], a control architecture
for fluid handovers that addresses all phases in a cohesive



Fig. 1: A schematic representation of an MRAV delivering
a tool to a human worker in a power line scenario.

manner is proposed. This approach takes into account the
interactions that occur during the handover and specifically
aims to minimize unwanted wrench components that are
not essential for moving and holding the object. However,
the proposed control scheme does not explicitly factor in
safety and ergonomics, which are crucial considerations in a
framework designed for collaboration between aerial robots
and humans, particularly in high-risk environments.

The inclusion of human comfort and ergonomics into
robot control and planning software has also been explored
in the literature. One of the earliest works in this area
is [15], which develops a manipulation planner accounting
for various human factors, such as ergonomics and field of
view. Subsequent studies have advanced this approach. For
example, [16] proposes a method for computing human joint
torques based on a whole-body dynamic model and then
controlling a ground mobile manipulator to minimize the
overloading of human joints. However, none of these works
consider ARs as robotic co-workers interacting with a human
operator.

In addition to the control and planning aspects, some
studies concentrate on improving these elements by equip-
ping ARs with the ability to perceive the human subject
through sensors. This is crucial as any reduction in visibility
of the human collaborator could negatively impact the task.
Perception-constrained control is a key consideration in these
studies. For example, [7] proposes an Nonlinear Model
Predictive Control (NMPC) formulation that incorporates
human ergonomics and comfort as objectives, while also
enforcing perception and actuation limits. Other research
focuses on using dynamic programming to ensure safety so
that the robot can never cause injury to the interacting human.
For instance, [6] presents a comprehensive framework for-
mulated as a constrained quadratic programming problem for
controlling an aerial manipulator during physical interactions
with a human operator. While these approaches enable ARs
to interact safely and ergonomically with a single human
operator, they do not account for scenarios where multiple
operators are involved and tools need to be carried multiple
times throughout the mission.

Alternatively, the field of automatic synthesis of robot
controllers for human-robot handovers from formal speci-
fications has also been explored. For example, the authors
in [17] present a controller for human-robot handovers au-

tomatically generated from high-level specifications in STL.
This approach offers formal guarantees on the timing of each
handover phase. In the realm of formal methods, [18] uses
probabilistic model-checking in a human-robot handover
task, validating a controller with respect to (w.r.t.) safety
and liveness [19] specifications. Finally, the authors in [17]
describe a formalism for human-in-the-loop control synthesis
and set up a semi-autonomous controller from TL specifica-
tions. However, as far as the authors are aware, this is the
first study that addresses the task assignment and trajectory
generation problem for ARs, specifically for MRAVs, to
enhance human-robot ergonomic collaboration.

B. Contributions

This paper presents a novel method in designing tasks and
motion planning for human-robot collaboration prioritizing
ergonomics. The approach is demonstrated using the specific
task of an MRAV performing object handovers in a power
line setting. The method employs STL to generate optimal
trajectories that comply with the vehicle’s dynamics and
velocity and acceleration limits, while also fulfilling vari-
ous mission specifications, such as collision avoidance and
safety requirements. A hierarchical strategy is implemented
to address the complexity of the problem, where an initial
guess solution is obtained by solving an ILP problem to act
as the starting point for the STL optimizer. This strategy
builds upon prior work [20], [21] by allowing users to
specify robot behaviors that take into account human com-
fort and preferences using high-level goals and constraints.
This includes computing trajectories that consider payload
capacity limitations and refilling stations for longer-duration
operations. Additionally, a method for computing the initial
solution for the optimization problem is proposed.

The proposed approach offers several key benefits: (i) by
using STL formulae, the framework can take into account
explicit time requirements, making it easy to adapt and
customize for various applications; (ii) the concise and
unambiguous STL formulation enables end-users to specify
robot behavior in terms they can understand, such as the
direction of approach and zones to avoid, reducing the need
for hand-coded algorithms; (iii) using automatic synthesis
based on formal models, our approach provides timing
guarantees. This means that the vehicle will always obey
timing constraints, as long as the human behavior allows for
it. It also notifies users of any constraint violations.

The approach has been validated through numerical simu-
lations in MATLAB. Additionally, Gazebo simulations were
used to demonstrate the approach’s effectiveness in a sce-
nario that closely resembles real-world implementation.

II. PROBLEM DESCRIPTION

The focus of this paper is to enhance the ergonomic
collaboration between humans and robots. The scenario
under examination is that of an MRAV equipped with a
manipulation arm performing object handovers in a power
line setting. This scenario is depicted in Figure 2. The
objective is to design a trajectory for the drone that takes



Fig. 2: Power line scenario for the ergonomic human-robot
collaboration. Human operators (HO) are represented in blue,
while the MRAV’s initial position (IP) and the refilling
station (RS) are depicted in magenta and green, respectively.

into account human ergonomic needs by approaching the
operator from the front, either from the left or right, from
above or below, and never from behind [8]. To simplify
the problem, the location of the handover operation is
represented as a 3D space for each operator. We assume
that the MRAV begins the mission with a tool. For ease
of understanding, we consider that only one object can be
delivered at a time. However, the method can be easily
extended to multiple objects. Once the MRAV reaches the
operator, it is assumed that an onboard low-level controller
handles the handover procedure, e.g. [6], [7]. The MRAV has
limited velocity, acceleration, and payload capacity, meaning
the number of tools it can carry is restricted. Furthermore,
there is a refilling station on the ground along the power line
where the drone can reload tools and resume operation. The
goal is to plan a trajectory for the MRAV to complete the
mission within a specified maximum time frame, while also
satisfying dynamics and capacity constraints. Further, safety
requirements must be met, such as avoiding obstacles and
never approaching the operator from behind. It is assumed
that a map of the environment, including a polyhedral
representation of obstacles like power towers and cables, is
known in advance.

III. PRELIMINARIES

Let us consider a discrete-time dynamical system S rep-
resented in the form xk+1 = f(xk, uk), where xk+1, xk ∈
X ⊂ Rn are the next and current states of the system
S, respectively, and uk ∈ U ⊂ Rm is the control input.
Let us also assume that f : X × U → X is differentiable
in both arguments and locally Lipschitz. Therefore, given
an initial state x0 ∈ X0 ⊂ Rn and a time vector t =
(t0, . . . , tN )⊤ ∈ RN+1, with N ∈ N>0 being the number
of samples that describe the evolution of the system S with
sampling period Ts ∈ R>0, we can define the finite control
input sequence u = (u0, . . . , uN−1)

⊤ ∈ RN as the input
to provide to the system S to attain the unique sequence of
states x = (x0, . . . , xN )⊤ ∈ RN+1.

Let us consider a Generically Tilted Multi-Rotor (GTMR)
model [22] to describe the vehicle’s dynamics. Also, let us

denote with FW and FB the world frame and body frame
reference systems, respectively. The body frame is attached
to the GTMR such that the origin of the frame OB coincides
with the Center of Mass (CoM) of the vehicle. The position
of the origin OB of the body frame FB w.r.t. the world frame
FW is denoted with p = (p(1), p(2), p(3))⊤ ∈ R3, while the
velocity and acceleration of OB in FW are denoted with
v = (v(1), v(2), v(3))⊤ ∈ R3 and a = (a(1), a(2), a(3))⊤ ∈
R3, respectively.

Hence, we can define the state sequence x and
the control input sequence u of a GTMR model
as x = (p(1),v(1),p(2),v(2),p(3),v(3))⊤ and u =
(a(1),a(2),a(3))⊤, where p(j), v(j), and a(j), with j =
{1, 2, 3}, represent the sequences of position, velocity, and
acceleration of the vehicle along the j-axis of the world
frame FW , respectively.

Finally, let us denote with p
(j)
k , v(j)k , a(j)k , and tk, with

k ∈ N≥0, the k-th element of the sequences p(j), v(j), a(j),
and vector t, respectively.

A. Signal temporal logic

Definition 1 (Signal Temporal Logic): STL is a concise
and unambiguous specification language for describing the
temporal behavior of real-valued signals [13]. One major
benefit of using STL formulae for motion planning over
traditional algorithms [23] is that all mission specifications
can be encapsulated into a single formula φ. For example,
the statement “at least two vehicles must complete tasks A
and B before task C is performed, one of them must execute
task D within the time interval [t1, t2], while all of them must
avoid obstacles and remain within the designated workspace”
can be expressed into a single STL formula φ. The syntax
and semantics of STL are detailed in [13], [24], however
a brief overview is provided here. STL’s grammar enables
the representation of complex behavioral requirements using
temporal operators, such as until (U), always (□), and
eventually (♢), as well as logical operators like and (∧),
or (∨), and negation (¬). These operators act on atomic
propositions (also known as predicates), which are simple
statements or assertions that are either true (⊤) or false
(⊥). Examples of atomic propositions include belonging to
a particular region or comparing real values (e.g., a distance
exceeding a threshold). An STL formula φ is considered
valid if it evaluates to a true (⊤) logic value, and invalid
(⊥) otherwise. For instance, informally, the formula φ1UIφ2

means that φ2 must hold at some point within the time
interval I and, until then, φ1 must hold without interruption.

B. Robust signal temporal logic

Definition 2 (STL Robustness): Uncertainties, dynamic
conditions, and unexpected events can all impact the sat-
isfaction of an STL formula φ (Def. 1). To account for
these factors and ensure a margin of satisfaction for an STL
formula φ, the concept of robust semantics for STL for-
mulae has been developed [13], [24], [25]. This robustness,
represented by ρ, is a quantitative metric that helps guide
the optimization process towards finding the best feasible



solution for meeting the statement (mission) requirements.
It can be formally defined using the following recursive
formulae:

ρpi(x, tk) = µi(x, tk),
ρ¬φ(x, tk) = −ρφ(x, tk),

ρφ1∧φ2
(x, tk) = min (ρφ1

(x, tk), ρφ2
(x, tk)) ,

ρφ1∨φ2
(x, tk) = max (ρφ1

(x, tk), ρφ2
(x, tk)) ,

ρ□Iφ(x, tk) = min
t′k∈[tk+I]

ρφ(x, t
′
k),

ρ♢Iφ(x, tk) = max
t′k∈[tk+I]

ρφ(x, t
′
k),

ρφ1UIφ2
(x, tk) = max

t′k∈[tk+I]

(
min (ρφ2

(x, t′k)) ,

min
t′′k∈[tk,t′k]

(ρφ1
(x, t′′k)

)
,

where tk + I represents the Minkowski sum of the scalar
tk and the time interval I . The formulae above consist of
a set of predicates, pi, along with their corresponding real-
valued function µi(x, tk), each of which is considered true
if its robustness value is greater than or equal to zero, and
false otherwise. The whole formula behaves like a logical
formula, which is deemed false if any of the predicates
are false. As an illustration, using the previous example of
belonging to a particular region, we can first divide the
mission into a set of predicates, i.e., bounds on distance
relative to upper and lower margins. Next, we compute the
robustness value associated with each predicate (how well
or poorly the specification is being satisfied). Finally, all
predicates are evaluated using the logical formulae presented
earlier. The result is a numerical value that indicates whether
the specification is being met and to what degree. Further
information on this can be found in [13], [24], [25]. In this
case, we say that x satisfies the STL formula φ at time tk
if ρφ(x, tk) > 0, and x violates φ if ρφ(x, tk) ≤ 0.

Therefore, we can compute the control inputs u that
maximize robustness over the set of finite state and input
sequences x and u, respectively. This optimal sequence u⋆

is considered valid if ρφ(x⋆, tk) is positive, with x⋆ and
u⋆ satisfying the dynamics of the system. The larger the
value of ρφ(x⋆, tk), the more robust the system’s behavior
is considered to be.

Definition 3 (Smooth Approximation): A limitation of the
standard robustness measure is that it is non-smooth and non-
convex for many useful specifications due to the inclusion
of min and max operators. To overcome this issue, recent
research has focused on smooth approximations of the ro-
bustness measure ρ̃φ(x, tk) [26], [27]. These approximations
allow for the use of efficient gradient-based optimization
methods and have been shown to perform well on a wide
range of problems, providing significant speed and scalability
improvements [28].

One of the approximations of the robustness measures is
the Arithmetic-Geometric Mean (AGM) robustness. This ap-
proach retains many of the computational benefits of the most
commonly used Log-Sum-Exponential (LSE) method [26].
Furthermore, AGM robustness is more conservative in the
sense that trajectories derived using this approach tend to

be more robust to external disturbances. However, the AGM
robustness is almost smooth everywhere, i.e., its analytical
gradient does not always exist. While this issue with singu-
larities may pose challenges for the solver, it is still important
to keep in mind that the optimization should not reach the
boundary conditions. For example, in the case of belonging
to the workspace area, there is no reason for the vehicle to
be at the boundaries. In light of this, we choose the AGM as
smooth approximation for the robustness measure ρ̃φ(x, tk).
The full description of the AGM robustness syntax and
semantics can be found in [27] and is not given here for
the sake of brevity.

Definition 4 (STL Motion Planner): By encoding the
mission specifications detailed in Section II as an STL
formula φ and replacing its robustness ρφ(x, tk) with the
smooth approximation ρ̃φ(x, tk) (as defined in Def. 3), the
problem of generating trajectories for the GTMR model can
be formulated as the optimization problem [20]:

maximize
p(j),v(j), a(j)

ρ̃φ(p
(j),v(j))

s.t. |v(j)k | ≤ v̄(j), |a(j)k | ≤ ā(j),

S(j),∀k = {0, 1, . . . , N − 1}

, (1)

where v̄(j) and ā(j) are the maximum desired values of
velocity and acceleration along the motion, respectively, and
S(j)(p

(j)
k , v

(j)
k , a

(j)
k ) = (p

(j)
k+1, v

(j)
k+1, a

(j)
k+1)

⊤ are the vehicle
motion primitives along each j-axis of the world frame FW

encoding the splines presented in [20, eq.(2)].

IV. PROBLEM SOLUTION

In this section, we apply the STL framework presented
in Section III to formulate the optimization problem in
Section II, resulting in a nonlinear non-convex max-min
problem formulated as a Nonlinear Programming (NLP)
problem solved through dynamic programming (Section IV-
A). To find a solution for this type of nonlinear problem
in a reasonable amount of time, we generate an initial guess
from a simplified ILP formulation (Section IV-B), that draws
inspiration from prior research [21]. It is worth noting that
the proposed approach distinguishes itself from previous ef-
forts by incorporating ergonomics features while maintaining
consistency with the previously identified objectives.

A. Motion planner

In this section, the requirements for the problem outlined
in Section II are translated into the STL formula, φ. The
mission to perform object handovers with an MRAV have
two types of specifications. Firstly, safety must be maintained
throughout the entire mission duration, tN ; the MRAV must
remain within the designated area (φws), avoid collisions
with surrounding objects (φobs), and never approach to the
operator from behind (φbeh). Secondly, certain ergonomic-
related objectives must be met at specific times in the mission
duration; each human operator must be visited once by
the MRAV and the vehicle must stay there for than (φhan),
with than ≪ tN , to perform the object handover. The MRAV
must approach the operator from the front, either from the



left or right, from above or below, based on the operator’s
preferences (φpr). Additionally, due to the limited carrying
capacity of the MRAV, the vehicle must stop at a refilling
station and remain there for a duration of trs, with trs ≪ tN ,
once its onboard supply of tools is depleted in order to
replenish its supply (φcap). Lastly, after completing handover
operations, the MRAV must fly to its nearest refilling station
(φrs). All mission requirements can be expressed in the STL
formula:

φ = □tNφws ∧ φobs ∧ φbeh

∧
♢tN (φhan ∧ φpr ∧ φcap)UtNφrs, (2)

with

φws = p(j) ∈ (p(j)
ws
, p̄(j)ws ), (3a)

φobs =

obs∧
n

p(j) ̸∈ (np(j)
obs
, np̄

(j)
obs), (3b)

φbeh =

beh∧
n

p(j) ̸∈ (np(j)
beh

, np̄
(j)
beh), (3c)

φhan =

ho∧
n

□than p
(j) ∈ (np(j)

ho
, np̄

(j)
ho ), (3d)

φpr =

ho∧
n

(
pr∧
m

♢tN p(j) ∈ (n,mp(j)
pr
, n,mp̄(j)pr )

)
, (3e)

φcap = □trs(c == 0)p(j) ∈ (p(j)
rs
, p̄(j)rs ), (3f)

φrs = p(j) ∈ (p(j)
rs
, p̄(j)rs ), (3g)

where equation (3a) ensures that the position of the MRAV,
denoted by p(j), remains within the designated workspace.
The minimum and maximum values of the workspace along
the j-axis of the world frame FW are represented by p(j)

ws
and

p̄
(j)
ws , respectively. Equations (3b), (3c), (3d), (3f), and (3g)

establish guidelines for obstacle avoidance, operator safety,
handover operations, payload capacity, and mission comple-
tion, respectively. The payload capacity of the MRAV is
represented by c ∈ N>0 as a positive integer. The vertices of
the rectangular regions identifying obstacles, areas behind the
operators, operators themselves, and refilling stations along
the j-axis of the world frame FW are represented by p

(j)
obs,

p
(j)
beh, p(j)ho , p(j)

rs
, p̄(j)obs, p̄

(j)
beh, p̄(j)ho and p̄(j)rs , respectively. Finally,

equation (3e) accounts for the human operators’ preferences
for the drone’s approach. These preferences include the
operator’s preferred approach direction, such as front, left,
right, above, or below [8]. The preferences define specific
areas represented by rectangular regions (p(j)

pr
, p̄

(j)
pr ) along

the j-axis within the world frame FW where the drone is
permitted to approach the operator. These areas are estab-
lished by taking the operator’s orientation into account and
reflecting the potential paths that the drone’s trajectory can
take when approaching the operator from different directions
(i.e., front, left, right, above, or below). The use of the
eventually operator ♢tN guarantees that the predicate (3e),
i.e., the drone position p(j) belonging to those rectangular
regions, will hold somewhere within the time interval tN .

Fig. 3: An illustrative representation of an MRAV ap-
proaching a human operator. In blue are depicted the areas
(p(j)

pr
, p̄

(j)
pr ) where the drone can approach the operator, while

in gray is a sample output from the STL optimizer.

A schematic representation of the scenario is reported in
Figure 3.

By using the specifications described in (2), we formulated
the optimization problem described in Def. 4 to determine
feasible trajectories that maximize the smooth robustness
ρ̃φ(x, tk) w.r.t. the given mission specifications φ. In order
to accomplish this, we must compute the robustness score
for each individual predicate. The predicates within the STL
formula (2) assess whether the MRAV’s position falls within
a specific region, as described in (3a)–(3g). When the MRAV
is located within a region, it is assigned a positive robustness
value. The higher the minimum Euclidean distance between
the MRAV’s trajectory and the region’s boundaries, the
greater the robustness. However, in (3b) and (3c), this rela-
tionship is inverted, with the MRAV’s presence in an obstacle
region or a space behind the human operator resulting in a
negative robustness value. To provide a specific example, let
us consider the φws predicate (3a). This predicate can be
mathematically expressed as follows:

ρφws
= min

k

(
min(ρφ̄(1) , ρφ(1) , ρφ̄(2) , ρφ(2) , ρφ̄(3) , ρφ(3))

)
, (4)

with

ρφ̄(j) = p̄(j)ws − p
(j)
k , ρφ(j) = p

(j)
k − p(j)

ws
.

Similarly, the robustness metric for the non-belonging
predicate φobs (3b) can be calculated by reversing the min-
imum distance values for each sample along the trajectory.
Mathematically, this can be represented as:

ρφobs
= min

k

(
−min(ρφ̄(1) , ρφ(1) , ρφ̄(2) , ρφ(2) , ρφ̄(3) , ρφ(3))

)
, (5)

where ρφ̄(j) and ρφ(j) , with j = {1, 2, 3}, can be computed

by replacing ρ̄(j)ws and ρ(j)
ws

in (4) with ρ̄(j)obs and ρ(j)obs, respec-
tively.

It is worth mentioning that the NLP problem is tackled
by means of dynamic programming, which has a tendency
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Fig. 4: Instance of the graph G assuming four human
operators (double round nodes), two refilling stations (round
solid nodes), and one vehicle. Arcs and weights wij denote
the MRAVs’s path. The depot is depicted by a round dahsed
node.

to get trapped in local optima if the initial guess is not well-
chosen [29], [30]. Therefore, selecting an appropriate initial
guess is of paramount importance.

B. Initial guess

An appropriate initial guess is essential to arrive at optimal
solutions for the STL motion planner within a reasonable
time frame, and also to prevent the solver from getting stuck
during the search for a feasible solution. The strategy for
obtaining this initial guess involves simplifying the original
problem by abstracting it in order to yield an optimization
problem with fewer constraints. Specifically, the initial guess
takes into account the mission requirements that pertain to
visiting all human operators, while noting the MRAV payload
capacity and refilling operations (φhan, φcap, and φrs).
However, it disregards the obstacle avoidance and ergonomy
requirements (φobs, φws, φbeh, and φpr), as well as mission
time intervals (tN , than and trs) as these constraints introduce
the most complex nonlinearities and motion discontinuities
in the problem.

A graph-based representation, including connections be-
tween the human operators and the refilling stations, is
employed to formulate an ILP problem that models a type
of capacitated Vehicle Routing Problem (VRP) [23]. The
resulting solution assigns the human operators (those they
deliver a tool to) to the vehicle and provides a navigation
sequence for the MRAV.

The graph used to formulate the ILP problem is illus-
trated in Figure 4 and is characterized by the tuple G =
(V, E ,W, C). The set of vertices denoted by V is comprised
of the human operators (T ), refilling stations (R), and the
depot (O) where the MRAV is located at the initial time t0.
The number of elements in T , R, and O are represented
by τ , r, and δ, respectively. The set of edges and their
associated weights are represented by E and W , respectively.
Furthermore, C represents the vehicle maximum payload
capacity. In terms of connectivity, all vertices in T are fully
connected to every vertex in R ∪ O. Formally, let eij ∈ E
represent the edge connecting the vertices i and j, with
{i, j} ∈ V, i ̸= j and wij ∈ W the weight associated with

eij . Given the dynamic constraints for the MRAV v̄(j) and
ā(j), we model the edge weights using Euclidean distances,
implying that wij = wji. Therefore, minimizing the mission
time can be equivalent to reducing the distance traveled by
the vehicle.

To represent the number of times an edge is selected in
the ILP solution, an integer variable zij ∈ Z≥0 is defined for
each edge eij ∈ E , and holds that zij = zji. This variable is
used to specify the number of times the corresponding edge
is selected in the ILP solution. Thus, zij is limited to the
set {0, 1} if {i, j} ∈ {T ,O} and zij is limited to the set
{0, 1, 2} if i ∈ R and j ∈ T . This limitation ensures that
an edge between two human operators is never traversed
twice and that the depot is only used as a starting point.
This makes the proposed solution further suitable for wider
scenarios where the MRAV can carry more than one tool
at a time. Additionally, this allows for round trips between
refilling stations and human operators in case there are no
other tools to be delivered, i.e., zij = 2. The variable zij = 0
corresponds to non-traversed edges. By utilizing all of these
defined variables, the ILP problem can be formulated as
follows:

minimize
zij

∑
{i,j}∈V, i ̸=j

wij zij (6a)

s.t.
∑

i∈V, i ̸=j

zij = 2, ∀j ∈ T , (6b)∑
i∈T

z0i = 1, (6c)∑
i∈T , j ̸∈T

zij ≥ 2h(T ) , (6d)

where (6a) represents the objective function that encom-
passes the overall distance traversed by the MRAV. The
constraints (6b) mandate that each human operator is visited
only once. Equation (6c) ensures that each MRAV begins its
mission at its depot and does not return. Constraints (6d)
prevent the formation of tours that exceed the payload
capacity of the MRAV or those which are not connected
to a refilling station. This is achieved by using the function
h(T ) [23] and dynamically adding these constraints as they
are violated.

Once the optimal assignment for the ILP problem is ob-
tained, motion primitives for the vehicle [20, eq.(2)] are used
to obtain a dynamically feasible trajectory that correspond to
its optimal assignment. The methodology to compute these
trajectories is described in [20] and is not covered in this
paper for conciseness. In summary, the motion primitives are
calculated by fixing rest-to-rest motion between operators,
resulting in zero velocity and acceleration in these places,
and imposing the minimum feasible time that allows for the
desired maximum values of velocity v̄(j) and acceleration
ā(j) along the MRAV’s motion. The time intervals for
handover than and refilling trs with the MRAV stopped in
the corresponding regions are also taken into account for the
trajectory.



Parameter Symbol Value
Payload capacity c 1 [−]

Max. velocity v̄(j) 1.1 [m/s]

Max. acceleration ā(j) 1.1 [m/s2]
Mission time tN 23 [s]

Handover time than 3 [s]
Refilling time trs 3 [s]

Sampling period Ts 0.05 [s]
Number of samples N 460 [−]

Heading operator HO1 ψho1 π[rad]
Heading operator HO2 ψho2 0[rad]

TABLE I: Parameter values for the optimization problem.

V. SIMULATION RESULTS

To validate the proposed planning approach, numerical
simulations were carried out in MATLAB. At this stage,
the vehicle dynamics and trajectory tracking controller were
not included in the simulations. The trajectories were then
verified for feasibility in realistic simulations performed in
Gazebo while exploiting the benefits of software-in-the-loop
simulations [4].

The optimization method was implemented in MATLAB
R2019b, with the ILP problem formulated using the CVX
framework and the STL motion planner using the CasADi
library and IPOPT as the solver. All simulations were run
on a computer with an i7-8565U processor (1.80GHz) and
32GB of RAM running on Ubuntu 20.04. Figure 7 depicts a
snapshot of the object handover task, while illustrative videos
with the simulations are available at http://mrs.felk.
cvut.cz/stl-ergonomy.

The proposed planning strategy was evaluated using the
object handover scenario outlined in Section II. In particular,
as shown in Figure 2, the simulation scenario consisted of
a mock-up environment (50m × 20m × 15m) with two
human operators, one refilling station, and a single MRAV.
The parameters and their corresponding values used to run
the optimization problem are listed in Table I. It is worth
noting that the handover time than and the refilling time
trs were set to short symbolic times to avoid analyzing
trajectories with excessive waiting times. The heading angle
of the MRAV was adjusted by aligning the vehicle with
the direction of movement when moving towards the human
operator. Once the MRAV reaches the operator, it is assumed
that an onboard low-level controller, e.g. [6], [7], handles
the handover operation, thus adjusting the heading angle
accordingly. The rectangular regions in which the drone was
allowed to approach the operator were established taking into
consideration the operators’ heading, ψho1 and ψho2, as well
as their preferred direction of approach (φpr).

Figure 5 illustrates the planned trajectories along with
the power towers and cables, human operators, and refilling
station. The figure compares the trajectories computed by
taking into account the preferred approach directions of the
operators, including front, right and left, and top to bottom.
The towers are 15m tall and are positioned 40m apart. The
optimization problem was solved in 130 s and it took 1 s
to find an initial guess solution. Note that, even though the
initial guess solution retrieved by solving the ILP problem

Fig. 5: Power line scenario. The trajectories considering
different operators’ preferred approach directions, such as
front, left and right, and top to bottom, and are depicted in
yellow, purple, and green, respectively.

is the same, the STL optimizer rearranges the trajectory to
maximize the robustness score. This basic scenario illus-
trates the decoupling of the final STL optimization from
the ILP initial solution, which provides added versatility to
the proposed human-robot collaboration planner. Addition-
ally, it highlights the ease with which high-level ergonomic
requirements can be integrated into the problem formulation.
However, as the complexity increases, beginning with an
initial solution far from the overall problem solution can lead
to the STL optimizer becoming trapped in a local optimum.

Figure 6 demonstrates that the planned trajectories comply
with the mission requirements. As can be observed from
the graph, the vehicle velocity and acceleration stay within
the permissible bounds ([v(j), v̄(j)] and [a(j), ā(j)]). For sim-
plicity, the velocity and acceleration bounds are considered
to be symmetric, i.e., |v(j)| = |v̄(j)| and |a(j)| = |ā(j)|.
In addition, the time frames for both the handover and
refilling operations are presented, highlighting how the user’s
preferences directly reflect on the MRAV motion.

VI. CONCLUSIONS

In this paper, a motion planning framework was intro-
duced to enhance ergonomic human-robot collaboration for
an MRAV with payload capacity limitations and dynamic
constraints. The proposed method employs STL specifica-
tions to generate trajectories that comply with mission re-
quirements, including safety, ergonomics, and mission time.
This work extends a previous motion planner [20], [21]
by introducing a method for tackling the nonlinear non-
convex nature of the optimization problem through the use
of an ILP approach. This approach utilizes a simplified
version of mission specifications to provide a feasible initial
solution for the STL framework to facilitate convergence of
the algorithm. Numerical analyses in MATLAB and realistic
simulations in Gazebo demonstrated the effectiveness of
the proposed approach. Future work includes incorporating
human operator fatigue into the problem formulation by
using weights associated with Boolean and temporal op-
erators to modulate the robustness. Additionally, research
will be conducted on the use of conflicting temporal logic

http://mrs.felk.cvut.cz/stl-ergonomy
http://mrs.felk.cvut.cz/stl-ergonomy
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Fig. 6: Position, linear velocity, and acceleration. The tra-
jectories are shown for the different operators’ preferred
approach directions, including left and right (left), front
(middle), and top to bottom (right). The time frames for
handover and refilling are indicated using blue and green
colors, respectively.

Fig. 7: A snapshot of the handover task in the Gazebo
simulator featuring an MRAV and a human operator.

specifications and other types of temporal logic languages to
adapt the framework for dynamic environments.
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