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Mission Planning and Execution in Heterogeneous Teams of
Aerial Robots supporting Power Line Inspection Operations

Álvaro Calvo1, Giuseppe Silano2, and Jesús Capitán1

Abstract— A software architecture aimed at coordinating
a team of heterogeneous aerial vehicles for inspection and
maintenance operations in high-voltage power line scenarios
is presented in this paper. A hierarchical approach deals
with high-level tasks by planning and executing complex
missions requiring vehicles to support human operators. A
resource-constrained problem allows distributing tasks among
the team taking into account vehicles’ capabilities and battery
constraints. Besides, Behavior Trees (BTs) are in charge of
mission execution, triggering replanning operations in case of
unforeseen events, such as vehicle faults or communication
drop-outs. The feasibility and validity of the approach are
showcased through realistic simulations achieved in Gazebo.

Index Terms— Task planning and execution; Multi-UAV sys-
tems; Behavior Trees; Power line inspection and maintenance.

I. INTRODUCTION

Energy demand has increased significantly over the last
decades. In order to keep up with this pace, inspection
and maintenance operations in electric power lines and
related infrastructures are becoming of uppermost impor-
tance for supply companies, as a way to prevent power
outages and mitigate economic losses. Nowadays, these
operations are usually scheduled periodically and carried out
by experienced working crews, who gather inspection data
and repair/replace the damaged parts on active lines using
manned helicopters. However, this procedure is highly risky,
as humans need to operate at height, under windy conditions,
and in hazardous environments.

Therefore, there is a strong interest of power suppliers
in finding appropriate technologies [1] to increase safety
and efficiency in these maintenance activities. Unmanned
Aerial Vehicles (UAVs) constitute a promising solution to
automate inspection operations [2], as they can work in
hazardous places, inspect remote locations of difficult ac-
cess, and monitor human operation for safety purposes. The
idea of using a team of heterogeneous UAVs cooperating
and performing various tasks to support a human crew on
site is even more appealing (see Fig. 1). However, this
problem is challenging for several reasons: (i) UAVs have
limited time of flight and payload, which forces them to
schedule recharging operations for a longer endurance; (ii)
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Fig. 1: Heterogeneous UAVs supporting inspection and main-
tenance operations. From left to right: inspection, monitor-
ing, and delivery scenarios.

heterogeneity prohibits the arbitrary exchange of one UAV
for another, which makes coordination for proper mission
accomplishment more complex; and (iii) the inspection needs
to be performed in dynamic settings, where UAVs or commu-
nication could fail. Therefore, there is a need for cooperative
multi-UAV architectures where heterogeneous vehicles can
efficiently compute and execute plans for long inspection
missions, extending their flight autonomy and reacting online
to unforeseen events, such as communication drop-outs or
vehicle’s breakdowns or faults.

In this paper, we propose a software architecture for plan-
ning and execution of inspection and maintenance missions
with a heterogeneous fleet of multi-rotor UAVs to support hu-
man crews in power lines assessment operations. In terms of
planning, the required tasks are allocated to different UAVs
depending on their capabilities, and recharging tasks are
scheduled for longer operation. Given the dynamic and
uncertain conditions of the environment where the mission
takes place (e.g, the number of available UAVs, the pending
tasks, actual battery consumption, tasks’ duration, etc.), the
execution of the mission is steadily monitored in order to re-
act to unplanned events by recomputing the task assignment
online. The software architecture extends and complements
our prior work [3], where we integrated the UAV’s low-level
capabilities taking the task planning part for granted.



A. Related work

In a multi-robot context, mission planning consists of
deciding which tasks to allocate to each robot and then
building plans with the assignment. Mission execution carries
out those plans and monitors them for mission accom-
plishment. Both problems have been widely studied in the
literature over years [4], [5] and they can be mainly grouped
into two classes, depending on whether the task alloca-
tion problem is addressed in a centralized or decentralized
fashion. Centralized solutions, in the form of constrained
optimization problems, allow to retrieve the best schedule for
each robot [6], [7]. However, these solutions suffer from the
high computational burden required to solve the optimization
problem. On the other hand, decentralized solutions [8], [9]
can address the computational load by sharing the problem
complexity over the robots. However, such an approach is
formulated at the expense of an increase in the inter-robot
communication or state estimation, which may be unfeasible
in some applications. Therefore, centralized approaches can
be more suitable for scenarios with a bounded number of
robots, mainly if communication network reliability and
compliance with safety requirements are among the mission
objectives.

Centralized auction algorithms [10] and consensus-based
methods [11] are commonplace. Some of these works present
solutions addressing heterogeneity in the robots’ capaci-
ties [6], [11]. Whereas, in missions where the tasks are placed
at different locations to be visited, routing problem formula-
tions are preferred. However, the latter easily ends up being
combinatorial NP-hard problems, so heuristic techniques are
usually applied to retrieve the solution within a reasonable
time [12], [13]. Alternatives consider the inclusion of tempo-
ral constraints and uncertainties in the tasks’ descriptions [4].
In this regard, Temporal Logic [14] can deal with the tasks al-
location when complex mission requirements need to be met.
However, these problems easily become very complex, being
non-convex min-max optimization problems [15]. On the
other hand, some works propose multi-UAV task allocation
frameworks integrating mission planning and execution [16]–
[18]. In [16], heterogeneous teams with ground and aerial
vehicles are combined so that UAVs can land by carrying
out recharging operations and thus extending their autonomy.
In [17], event-triggered replanning is considered during the
mission execution. ROSPlan [18] focuses on deterministic
complex planning problems.

Finally, regarding the encoding of the UAV behavior dur-
ing mission execution, Finite State Machines (FSMs) are still
the most widespread option [19], although recently the use
of Colored Petri nets [20] have been also proposed. Among
these, Behavior Trees (BTs) are gaining momentum [21],
thanks to the advantages in terms of behavior composability
and reusability, fault tolerance, and parallel task execution.

B. Contributions

In this paper, we propose a software architecture for mis-
sion planning and execution of inspection and maintenance
tasks with a heterogeneous team of UAVs for power lines

assessment missions. Our approach is based on a central-
ized High-Level Planner, that assigns tasks to the UAVs
and schedules recharging operations in between based on
operator’s requests, along with a distributed Agent Behavior
Manager, in charge of mission execution on board each
vehicle. Specifically, in Section II we define an application-
driven problem for supporting human crews during inspec-
tion missions. While, in Section III we propose a software
architecture for multi-UAV mission planning and execution.
The software stack is released as open-source1 making it
possible to go though any part of the framework and replicate
the obtained results. Our main contributions are as follows:

• We propose a heuristic planner (Section III-A) that can
cope with UAVs heterogeneous capabilities and battery
constraints, allocating tasks and scheduling recharging
operations in between.

• A distributed management component based on BTs
(Section III-B) is in charge of monitoring the tasks
execution and requesting an online replanning in case
of system’s breakdowns or failures (e.g., a UAV runs
out of battery).

• Software-In-The-Loop (SITL) simulations have been
carried out in realistic simulation scenarios showcasing
the performance and feasibility of our methods (Sec-
tion IV) and providing insight into future directions
(Section V). Benefits in terms of computation time for
planing missions are also provided.

II. PROBLEM DESCRIPTION

Three tasks of interest are considered: (i) inspection,
where a fleet of UAVs carries out a detailed investigation
of power equipment on its own, assisting human operators
in acquiring views of the power tower that are not easily
accessible, as depicted in Fig. 1a; (ii) monitoring, where a
formation of UAVs provides to the supervising team a view
of the humans working on the power tower to monitor their
status and ensure their safety, as shown in Fig. 1b; and (iii)
delivery, where a UAV equipped with loading capabilities
interacts with a human worker to deliver a tool, as reported
in Fig. 1c. Some tasks only require a single UAV, while
others involve several UAVs who must work together to
achieve a common objective. Moreover, depending on their
capabilities, some UAVs can perform different types of tasks,
by serving as both an inspection and monitoring UAV,
whereas those with capabilities for physical interaction are
the only ones that can perform delivery tasks.

We assume that the UAVs operate in a known environment
represented by a previously acquired map, including the
position of the power towers and lines. Besides, precise
algorithms for UAV localization and navigation are taken for
granted. Specifically, the UAVs in the team are endowed with
a proper set of hardware equipment and low-level controllers
for the execution of the defined tasks. Moreover, the UAVs
can detect human gestures [22] that are used to provide

1https://github.com/grvcTeam/aerialcore_planning
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Fig. 2: The software architecture. Arrows represent the data exchange among blocks, while dotted boxes are used to identify
the two layers composing the architecture.

high-level actions, such as requests for new tasks or new
parameters for a previously requested task.

In the inspection operations, the low-level controller en-
codes the mission execution as a trajectory planning problem
where the vehicles need to move from an initial position and
through a sequence of target points, while avoiding obstacles
and maintaining a safety distance between them [14]. In the
monitoring operations,the corresponding low-level controller
solves a formation control problem where the vehicles need
to keep the human worker within the camera frame during
the entire operation, providing complementary views from
multiple angles [23], [24]. In both tasks, quadrotor UAVs
support maintenance operations. Last, in delivery missions
the UAV is equipped with hardware to transport and deliver
tools to a human worker. The corresponding low-level con-
troller implements human-aware motion planning and control
algorithms [25] for a safe interaction with the worker.

Given these settings, the objective is to coordinate the
heterogeneous fleet of UAVs to perform all the operator’s
actions while complying with drones’ battery constraints
and unforeseen events that may occur during the mission
execution, such as the arrival or a failure of an action and
a UAV running out of battery or communication drop-outs.

III. SOFTWARE ARCHITECTURE

The software architecture is organized into two layers: the
High-Level Planner (Section III-A) and the Agent Behavior
Manager (Section III-B). The former is placed at a ground
station, while the latter run onboard the UAVs. Figure 2
describes the overall software architecture. The High-Level
Planner interacts with the human crew through a Gesture
Recognition block [22]. Such a block encodes the human
gestures into actions for the fleet of aerial vehicles. Hence,
the High-Level Planner outputs a set of tasks each vehicle
has to execute to fulfill the mission objectives. Then, N-
instances of the Agent Behavior Manager take care of
extracting the necessary parameters from the assigned tasks
(e.g., the waypoints to inspect, the human worker to monitor
or to whom deliver a tool, etc.) and coordinate the mission
execution based on the inputs provided by the Human
Tracker [22] (which provides the worker position) and UAV
Autopilot blocks [26]. Continuous Feedback from each Agent
Behavior Manager block, namely the status of the BT and

the drone’s battery level, is sent back to the planner, so that
it can react to certain events. The Task Outcome of each task
(i.e., success or failure) is also communicated to the Agent
Behavior Manager by the Low-Level Controllers. The chain
ends with the control signals generated by the Low-Level
Controller blocks to make the UAVs fly.

A. High-Level Planner

The High-Level Planner is a centralized module of the
software architecture. This module is in charge of tasks
planning, i.e., it decides which task will be assigned to each
UAV. Mission high-level actions (i.e., inspection, monitoring,
and delivery) are encoded as human gestures provided by
the human crew on the site. Multiple actions could be
requested simultaneously. For instance, the crew may ask
to inspect a set of target points (i.e., points of interest for
the action), performing a visual examination of the power
equipment and their surroundings, while the operation of a
worker on a nearby power tower is monitored, e.g., providing
views with multiple cameras in formation. Recall that there
exist multiple UAVs for concurrent mission objectives, and
that certain vehicles may play different roles (inspection or
monitoring) depending on the needs.

To come up with an action assignment that satisfies
the mission objectives, a First-Come-First-Serve scheduling
policy is implemented to arrange actions such that max-
imum priority operations are taken. Besides, actions are
endowed with positive numerical weights that can be tuned
to parametrize the execution based on the UAV type. Before
allocating them to UAVs, actions are arranged within a
queue that follows an ascending order based on the weights
that have been assigned to each action. The so-formulated
scheduling policy allows us to capture user preferences,
i.e., the importance or priorities of different actions, and
to adapt the mission in case of incompatible tasks or with
performance preferences, by changing the actions’ position
within the queue.

Once an action has been taken (inspection, monitoring, or
delivery), a task allocation problem is formulated to decide
which task (i.e., points of interest for the action) will be
assigned to each UAV. A resource-constrained problem deals
with the task assignment, where the resources are the number
of available UAVs, their capabilities and remaining battery



levels. Given the complexity of the problem, which may be
intractable when the number of tasks, UAVs and mission
constraints increases, we propose an heuristic to determine
adequate feasible solutions. Specifically, a minimization (1)
is carried out over a cost function defined as the sum of three
terms:

i⋆ = argmin
V

J1(V) + J2(V) + J3(V), (1)

where V refers to the set of available UAVs and i⋆ represents
the optimum tasks sequence for the set of UAVs V . J1(V)
represents a cost per type of UAV, in a way to reward the
use of most suitable UAVs to cope with the task execution
(inspection and monitoring UAVs can play the same role).
J2(V) is a travel cost, which takes into consideration the
distance separating the UAV position to the task start. Last,
J3(V) is an interruption cost, which penalizes interrupting
another task in execution to take a new one, according to
the action priorities defined by the user. This way, tasks are
assigned to UAVs with the lowest cost per task.

This task assignment procedure can be run both when mis-
sion planning is conducted offline, and during the execution
of the mission, when a replan request may be triggered due to
unforeseen or external events. In these situations, the High-
Level Planner checks whether task reallocation is needed.
In particular, replanning is triggered every time a running
task is finished, a new task arrives or the parameters of a
previously commanded task are modified. Also, replanning
is required when a UAV gets disconnected or re-connected
due to a communication drop-out or a battery fault occurs,
that causes a sudden decrease of the UAV remaining flight
time making unfeasible for the vehicle to finish its plan. A
watchdog timer helps to manage brief UAV disconnection
issues by avoiding replanning operations when not needed.

In order to comply with battery constraints, recharging
operations are included as additional tasks in the final plan.
Battery consumption is estimated (using a constant rate
model) considering the required travel distance for each
assigned task. Then, depending on the remaining battery
level, recharges are placed either before starting a new task
or in the middle of a task, breaking it in two parts, so that the
UAV can resume later (e.g., inspecting part of the points in an
inspection action, stopping to recharge, and then continue).
Artificial actions so that a UAV waits on its recharging spot
can also be scheduled to synchronize task execution in cases
of multi-UAV tasks (e.g., if several UAVs need to start a
monitoring action together). These actions are in addition to
those provided by the problem description.

Figure 3 shows an illustrative example with the plans for
2 UAVs performing a mission considering 4 actions. The
human worker supplies the UAV team with a list of actions in
the order: delivery a tool, inspect an area of interest, perform
a monitoring operation, and then inspect another part. For
the considered scenario, only the UAV-1 is supposed to
be capable of performing delivery tool operations. Given
the limited battery capacity, UAV-2 breaks its monitoring
operation to recharge in the middle. Meanwhile, UAV-1 takes

Mission Plan
UAV-1

Delivery Inspect Wait Monitoring

UAV-2

Inspect Monitoring Recharge Monitoring

Fig. 3: Example of a mission plan with 2 UAVs and 4
actions. Different colors indicate the type of action, while
their duration is represented by the horizontal axis.

its role. An artificial wait action is scheduled before for task
synchronization.

After mission planning, the High-Level Planner outputs
a list of assigned and feasible tasks for each UAV. The
tasks are provided as inputs to the N-instances of the Agent
Behavior Manager, as many as the available vehicles, which
are in charge of extracting the tasks’ parameters for the cor-
responding Low-Level Controllers where complex behaviors
are encoded [14], [23]–[25].

B. Agent Behavior Manager

The Agent Behavior Manager runs as a distributed control
chain on board each UAV. This module mainly implements
a state machine encoded as a BT, which monitors the UAV
state and the task outcome and reacts to any possible failure
or unexpected events, activating contingency actions and
requesting a new plan to the High-Level Planner. Such
an approach preserves the key properties of the low-level
control systems while ensuring high modularity of the whole
control structure. It is indeed worth mentioning that BTs
unlike FSMs guarantee bidirectional control transfers (up
and down the control chain) by replacing the concept of
transitions with the propagation of a signal through the tree.
A complete description of the BT syntax, semantics and
functioning can be found in [21], and here it is not reported
for the sake of brevity.

In short, let a BT be a directed tree embedding the usual
definition of nodes, root, leaves, children, and parents. In
a BT each node belongs to one of the following categories:
Fallback, Sequence, Parallel, Action, and Condition. Suc-
ceeds, Fails, and Running conditions of these node types
are summarized in Table I. Leaf nodes are either Actions
or Conditions, while interior nodes are either Fallbacks,
Sequences, or Parallels. Each leaf represents a particular
conclusion or action to be carried out, and each nonleaf rep-
resents a predicate to be checked. BTs operate propagating a
tick signal from the root downwards, checking nodes’ status
according to their operating rules, until it reaches a leaf node,
and executing each node’s callback in the process.

A hierarchical BT, i.e., the Main Tree, encodes the be-
havior of each UAV, as depicted in Figs. 4, 5 and 6. This
Main Tree takes as input the list of tasks from the High-
Level Planner. If the mission is not over, the battery level is
checked, and if the UAV has a wrong tool, this is dropped
(Drop Tool Tree). Depending on the next assigned task, the
corresponding subtree (i.e., Monitoring Task Tree, Inspection
Task Tree or Delivery Tool Task Tree) is executed, if in Idle



NODE TYPE SUCCEEDS FAILS RUNNING

Fallback
a

If one child
succeeds

If all
children fail

If one child
returns running

Sequence
a

If all children
succeed

If one
child fails

If one child
returns running

Parallel
a

If α ∈ N+

children succeed
If β > α children
fail, with β ∈ N+

Else
a

Action
a

Upon
completion

When impossible
to complete

During
completion

Condition If true If false Never

TABLE I: Nodes type of a BT.
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Fig. 4: Main Tree. Reactive control nodes (e.g., Fallback
or Sequence) are shown in magenta, leaf nodes (Action and
Condition) in blue, and decorator nodes (to transform the
result of a child) in orange. Normal control nodes and sub-
trees are in white.

the UAV goes to the recharging station. If a failure is detected
(i.e., a communication drop-out or a lack of battery), there is
an emergency protocol that empties the UAV’s task queue, so
that the BT detects no tasks and activates the Idle condition
to head the recharging station. Meantime, a failure to execute
the task is reported to the High-Level Planner, who triggers
a replanning procedure that redistributes the tasks among
the available UAVs to ensure the mission is accomplished
successfully.

IV. SIMULATION RESULTS

This section showcases the feasibility of the proposed
software architecture through several use cases in a realistic
simulation setup. In particular, we run the software archi-
tecture in a quite close to real application scenario using
the Gazebo robotic simulator, exploiting the advantages of
Software-In-The-Loop simulations [27]. The software stack
was coded using the Robot Operating System (ROS) Melodic
Morenia running on Ubuntu 18.04. The BehaviorTree CPP
library2 has been used to code the BTs. All simulations were
performed on a laptop with an Intel-Core i7-7700 processor
(3.60GHz) and 16GB RAM. Figure 7 depicts a snapshot
of the monitoring task, while illustrative videos with the
simulations are available at http://mrs.felk.cvut.

2https://github.com/BehaviorTree/BehaviorTree.CPP
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Fig. 5: Subtrees encoding the basic actions for the tasks
described in Section II.
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cz/bt-planner. The code has been released as open-
source1 making it possible to replicate the obtained results.

In order to test the interaction of the UAVs with a realistic
environment, the simulated scenario includes power towers
of 20m high along with the corresponding wires and a
human worker. All Gazebo models and mesh files have also
been made available1. For the sake of simplicity and ease
of experimentation, human gestures to command high-level
actions and low-level controllers to perform the tasks have
been simulated using console user inputs and idle states,
respectively. Note that this does not imply a loss of generality
as human gestures and low-level controllers are only input
and output interfaces for the proposed software architecture,
respectively.

http://mrs.felk.cvut.cz/bt-planner
http://mrs.felk.cvut.cz/bt-planner
https://github.com/BehaviorTree/BehaviorTree.CPP
http://mrs.felk.cvut.cz/bt-planner


Fig. 7: A snapshot of the monitoring scenario. Solid and
dashed circles indicate the UAVs and the human worker,
respectively.

Additionally, the simulation tests use a ROS node model-
ing the UAV battery discharge to generate unexpected events
such as a sudden lack of battery. Thus, the run experiments
demonstrate the applicability of the software architecture
in emergency situations, where a replanning is triggered to
reassign the pending tasks to the available UAVs. In this
scenario, recharging stations are modeled as waypoints to
reach for the UAVs, and then land, thus simulating a battery
replacement operation.

V. CONCLUSIONS

This paper has presented a software architecture to support
maintenance and inspection operations in power lines with
a fleet of heterogeneous aerial vehicles. In particular, a two-
layer software stack based on a centralized high-level planner
and a distributed agent behavior manager has been proposed.
The planning accounts for task priorities and UAV battery
constraints, while the replanning allows UAVs to react to
unforeseen events during mission execution. The architecture
has been designed around a set of libraries and software
components that handle the interface with UAV low-level
controllers for task execution and crew requests through
human gestures. Simulations in the Gazebo robotic simulator
have demonstrated the feasibility of the proposed software
architecture, aiming towards the fulfillment of real-word
tests. As future work, we plan to integrate an optimal layer
for mission planning as well as accounting for uncertainties
in task execution and workers’ intentions. In addition, formal
verification methods will be investigated with the aim of
testing the UAV behaviors in as many use cases as possible.
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