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Abstract.
This article proposes Persistence Administered Collective Navigation (PACNav) as an approach

for achieving decentralized collective navigation of Unmanned Aerial Vehicle (UAV) swarms. The
technique is based on the flocking and collective navigation behavior observed in natural swarms, such
as cattle herds, bird flocks, and even large groups of humans. As global and concurrent information
of all swarm members is not available in natural swarms, these systems use local observations to
achieve the desired behavior. Similarly, PACNav relies only on local observations of relative positions
of UAVs, making it suitable for large swarms deprived of communication capabilities and external
localization systems. We introduce the novel concepts of path persistence and path similarity
that allow each swarm member to analyze the motion of other members in order to determine its own
future motion. PACNav is based on two main principles: (1) UAVs with little variation in motion
direction have high path persistence, and are considered by other UAVs to be reliable leaders;
(2) groups of UAVs that move in a similar direction have high path similarity, and such groups
are assumed to contain a reliable leader. The proposed approach also embeds a reactive collision
avoidance mechanism to avoid collisions with swarm members and environmental obstacles. This
collision avoidance ensures safety while reducing deviations from the assigned path. Along with
several simulated experiments, we present a real-world experiment in a natural forest, showcasing the
validity and effectiveness of the proposed collective navigation approach in challenging environments.
The source code is released as open-source, making it possible to replicate the obtained results and
facilitate the continuation of research by the community.
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Figure 1: Picture from the flight experiment performed in
a natural forest.

1. Introduction

The collective motion of a tightly cooperating group
of UAVs has been intensively investigated in recent years [1,
2]. The use of a group of UAVs can reduce mission time
and provide the redundancy and safety that is critical
in many real-world applications, such as mapping large
areas [3], construction [4], agriculture [5], and search-
and-rescue missions [6]. These applications have further
motivated research on the collective motion of a group
of UAVs [7–9]. Indeed, large groups of UAVs are effective
in some scenarios where facing the problem with a single
robot may be unfeasible or difficult to solve. UAV swarms
have also been useful for applications where redundancy
is needed to cope with failure of individual UAVs [10]
and in cases when multiple UAVs need to gather data
simultaneously [11].

The deployment of a group of UAVs requires a com-
plex system composed of several intricate subsystems han-
dling vehicle control, environment perception, absolute or
relative localization, mapping, navigation, and communica-
tion. Therefore, the use of centralized control architectures
which require UAVs to communicate and exchange infor-
mation over a shared network may explode in complexity
as the number of vehicles and the size of the working area
increases. Thus, it is important to introduce decentralized
control architectures, fault detection systems, and feasible
information sharing over a low-to-none bandwidth network.

Animals, including fish and birds, are an important
source of inspiration to tackle this problem due to their use
of decentralized decision making for collective motion [12–
14]. Reynolds [15] described this motion using a set of
simple rules addressing attraction to the group, repulsion
from neighbors, and alignment to move in the same

direction as the group. These rules have since been adapted
for use in robotic swarms with additional components for
obstacle avoidance [16]. The simplicity of the rules and
the decentralized nature of the control strategy provides
robustness against the failure of individual robots. In
many cases, the decentralized decision making system only
depends on local information about the neighbors, which
makes these methods scalable to a large number of robots.

Decentralized control of a swarm of UAVs can also be
achieved using predictive controllers and trajectory plan-
ning. The swarm of UAVs in [17] uses reactive avoid-
ance and Model Predictive Control (MPC) strategies for
collective navigation. On the other hand, [18] presented
a nonlinear optimization method for decentralized trajec-
tory planning. However, these methods require a shared
reference frame to localize all the UAVs and often rely
on shared information about the position and future tra-
jectory of other UAVs. Establishing a shared reference
frame and communication links is often unfeasible or dif-
ficult to achieve in practice due to unreliable Global Nav-
igation Satellite System (GNSS) signals, as well as losses
in wireless communication caused by environmental occlu-
sions and reflections. Thus, dependence on localization and
communication infrastructure can severely limit the use of
these methods in environments cluttered with obstacles. In
cluttered spaces such as forests and construction sites, it is
common practice to use onboard sensors for the localiza-
tion and relative pose estimation of other UAVs. Although
these sensors often have a higher computational demand
than those used for global localization and communica-
tion, they can provide information at a rate sufficient for
stable motion. The work in [19] presents a decentralized
swarm that does not use communication, but still relies on
a shared global reference frame (GNSS). In our previous
works [20, 21], we described a UAV swarm that navigates
towards a goal completely independent of any shared ref-
erence frame and communication infrastructure. However,
both [20, 21] do not perform well in the presence of occlu-
sions from the surrounding obstacles and scale poorly with
a growing number of UAVs.

Dependence on communication has a negative influ-
ence on the scalability of the swarm. Moreover, sharing
a reference frame may require exchange of mapping in-
formation and synchronization in GNSS-denied environ-
ments [22], which has adverse effects on robustness. There-
fore, this article proposes a bioinspired decentralized ap-
proach for collective navigation of a swarm of UAVs with-
out using GNSS and any communication. The UAVs are
controlled using only onboard sensor data, which is used
for detecting and localizing obstacles and other team mem-
bers. The proposed approach builds upon the analysis of
collective motion of groups of animals and humans [23] in
order to design path similarity and path persistence met-
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rics for comparing the trajectories of UAVs. Target UAVs
are selected based on these metrics and consequently fol-
lowed by individual UAVs, resulting in a collective motion.
The approach does not rely on any prior information about
the environment or the swarm and can be deployed in an
unknown environment cluttered with obstacles. The colli-
sion avoidance mechanism proposed as part of the approach
places high emphasis on safety and is specifically designed
to operate in complex unknown environments. In particu-
lar, collision avoidance is designed in such a way so as to
reduce deviations from the assigned paths by only react-
ing to the UAVs showing an immediate threat of collision.
This is similar to the emergency instincts which are often
observed in swarms of animals in nature. Simulated exper-
iments and real-world flight in a natural forest have been
used to validate and analyze the performance and robust-
ness of the proposed approach. Compared to our previous
works [20,21], the approach proposed in this article uses rel-
ative localization information, recorded over a finite time
horizon, to overcome the challenges of occlusion of UAVs
by obstacles. The source code related to this work has
been released as open-source‡ for easy replication and fu-
ture work by the community. Additionally, videos from the
simulations and real-world experiments have been provided
as supplementary multimedia material and made available
at http://mrs.felk.cvut.cz/pacnav.

1.1. Related works

UAV swarms have been a topic of several studies and
have recently gained a lot of attention due to their useful
properties, such as adaptability, scalability, reliability,
and fault-tolerance [2, 24, 25]. The idea of using group
intelligence stems from natural biological systems, such as
flocks of birds, schools of fish, or swarms of bees. One of
the first simulated models of the natural flocking behavior
of birds was introduced in [15], where the motion of a swarm
of dimensionless particles was controlled by a simple set of
rules. [2] describes several different methods to control a
swarm of UAVs, including physics-based models and MPC.
However, most of the recent research has been limited to
laboratory-like conditions, as presented in [26–29].

1.1.1. No obstacle avoidance Recent works presented
in [19, 30, 31] study the real-world deployment challenges
of UAV swarms. [19] uses the method developed in [15]
for controlling a swarm of UAVs in a real-world
environment, where each UAV uses GNSS for localization
and shares this position information with other UAVs
over a communication network. The swarm in [30]
also uses GNSS and communication for flocking, but
has additional constraints on energy consumption. The
reliance of [19, 30] on GNSS makes them unsuitable for
several real-world scenarios where GNSS is unreliable or
unavailable, e.g., forests and indoor construction sites. [31]
presented a swarm of UAVs for GNSS-denied environments
that uses inter-UAV communication to control the swarm.
However, inter-UAV communication scales poorly with a
growing number of UAVs in the swarm and can become

‡ https://github.com/ctu-mrs/pacnav

a bottleneck in cluttered environments where obstacles
reduce the communication range. The work presented
in [29] uses a computer vision based technique for relative
localization of UAVs. The use of on-board sensors for
relative localization makes this method independent of any
communication infrastructure and associated scalability
issues. However, [19,29–31] do not implement any collision
avoidance, thus limiting the deployment to only obstacle-
free environments.

1.1.2. Obstacle avoidance with relative localization and
communication The swarm system presented in [18] uses
cameras for relative localization and obstacle avoidance in
a cluttered environment. The motion planning problem
of moving the UAVs towards a goal is solved as a
nonlinear optimization problem on-board each vehicle.
However, this method uses a broadcast communication
network to share UAVs’ trajectories for collision avoidance
between vehicles. The method presented in [32] uses
a UltraViolet (UV) light based visual relative localization
system for the UAVs. Cameras placed on the UAVs localize
other UAVs in a relative reference frame, removing the
need for sharing position information. Although the swarm
in [32] can avoid static obstacles, the real-world experiments
use artificial obstacles and very low environment density.
Moreover, the obstacle positions are known a priori, which
is difficult to achieve in arbitrary real-world deployment
scenarios. The bioinspired method introduced in [16]
models the obstacles as agents or as a group of agents
depending on the obstacles number. This approach is easy
to implement, but relies on precise obstacle positions and
shape estimates which are not trivial to obtain in complex
environments. Furthermore, such an approach can often
create a virtual deadlock when the UAV agent is surrounded
by several obstacles, as is common in cluttered real-world
environments, such as forests or indoor construction sites.

1.2. Contributions

This article proposes Persistence Administered Collective
Navigation (PACNav) as a decentralized approach to
navigating a UAV swarm without communication and
without global localization infrastructure from its initial
position to a goal point. We address several challenges
related to the real-world deployment of a swarm of UAVs
and their collective motion in a cluttered environment. The
main contributions going beyond the previously presented
literature include:

• a bioinspired decentralized approach to infer goal
direction using motion of UAVs observed directly from
on-board sensors, similar to the sensory organs of
animals. This approach is based on novel concepts
of path persistence and path similarity which make it
resilient to sensor uncertainties observed during real-
world deployment;

• an approach for motion planning and reactive
collision avoidance to safely navigate the swarm
in cluttered environments without communication
among the UAVs and any global localization system.

http://mrs.felk.cvut.cz/pacnav
https://github.com/ctu-mrs/pacnav
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1.3. Notation

This article will use [A]i to denote the i-th column of a
matrix A, and [A]ij to denote the i-th row and the j-th
column of the matrix A. For any two matrices A and B,
[A,B] is used to represent column concatenation. If S is a
set, then |S| denotes its cardinality. For any two vectors a
and b, their inner product is written as a · b. The symbol
‖•‖ denotes the Euclidean norm.

2. System Model

We consider a swarm composed of N -UAVs that move on
a horizontal plane (XY -plane) and assume that we can
directly control their velocities along these axes. Thus, the
system dynamics of the i-th UAV, at discrete time index k,
can be described with a point-mass model as:

ṗi[k] = ui[k], (1)

where pi[k] ∈ R2 is the position in the world coordinate
frame FW , and ui[k] ∈ R2 is the velocity control input
expressed in the same reference system (FW ).

We assume that UAVs in the swarm do not have prior
information about other UAVs and cannot communicate
among themselves. Each UAV is equipped with an
omnidirectional camera, allowing for position estimation of
the other UAVs using an image processing method [33–35].
Obstacles in the environment may occlude the camera
view and, consequently, direct observation of other UAVs’
positions is not always possible. Thus, the estimate p̌ij [k]
of the j-th UAV position when observed by the i-th UAV,
at discrete time k, is modeled as:

p̌ij [k] = qij [k] + ij [k], (2a)

qij [k] = pij [k]fij [k] + p̌ij [k − 1]f̄ij [k], (2b)

where pij [k] ∈ R2 is the relative ground truth position
of the j-th UAV with respect to the i-th UAV. fij [k] = 1 if
there is Line of Sight (LoS) between the i-th and j-th UAVs
and fij [k] = 0 otherwise. f̄ij [k] is the complementary
function of fij [k]. ij [k] ∈ R2 is the estimation error
which is assumed to be a Gaussian random process with
zero-mean and covariance matrix σ2[k]I, where I ∈ R2×2

represents the identity matrix, and:

σ2[k] = fij [k]σ2
LoS + f̄ij [k]σ2

NLoS. (3)

The terms σLoS and σNLoS capture the different sources
of estimation error. In the case of LoS, the estimation
error is mostly influenced by the sensor noise. However,
when the LoS is lost, factors, including UAV motion
or other random processes, further contribute to the
estimation error. For simplicity, we assume omnidirectional
sensing, although (2) can be adapted to consider any other
directional sensor.

When there is LoS between the i-th and the j-
th UAVs, the error in the position estimate is modeled by
the additive Gaussian noise (see (2)) with zero-mean and
covariance matrix σ2

LoSI. Depending on the available LoS,
the i-th UAV performs two actions: i) it adds the index j to

Algorithm 1: Updating set Ni[k]

Data: Ni[k − 1], fij [k], δij [k − 1]
Result: Ni[k]

/* add indices of UAVs that have LoS

with the i-th UAV at time instant k
*/

Ni[k]← Ni[k−1]∪{j : fij [k] = 1, j /∈ Ni[k−1]}
for j ∈ Ni[k] do

if fij [k] = 1 then
/* δij: latest recorded time

when there was LoS between

the i-th and j-th UAVs */

δij [k]← k
else

δij [k]← δij [k − 1]
end

/* remove j from Ni[k] if LoS with

the i-th UAV has been lost for

more than Km time instants */

if k − δij [k] > Km then
Ni[k]← Ni[k] \ j

end

end

the set of neighborsNi[k] whenever LoS is obtained between
them. However, when the LoS is lost, the estimate p̌ij

becomes an autoregressive process which provides feedback
to the noise process ij . Its expected value is the last known
position of the j-th UAV, and its covariance matrix grows
linearly at a rate of σ2

NLoS per sampling instant; ii) the
i-th UAV removes the index j from Ni[k] if the LoS with
the j-th UAV is lost for more than Km time instants, where
Km ∈ R is a design parameter. A δij variable keeps track of
the latest known time instant when there was LoS between
the i-th and j-th UAVs. Algorithm 1 describes the update
of Ni[k] in more detail.

The approach proposed in this article relies on a
sequence of position estimates which are stored in a matrix
Hij [k], called the path history matrix. When index j is
added to Ni[k], the i-th UAV starts to store the position
estimates p̌ij [k] into a path history matrix Hij [k], along
with the corresponding time instant of the estimate into the
matrix Γij [k]. Algorithm 2 describes the update process for
Hij [k], where the estimates are sequentially concatenated
in Hij [k]. [Hij ]1 contains the newest position estimate of
the j-th UAV, and [Hij ]Lij the oldest one, where Lij ∈ N>0

is the number of columns of the matrix Hij . When an
estimate is older than the design parameter Kp ∈ Z>0, it
is removed from Hij [k], and so Lij ≤ Kp.

We now use the previously described data structures
to introduce some metrics and notation that will be helpful
for the description of the proposed PACNav approach
detailed in the following sections.

Definition 1 (Path Similarity): This metric
describes the similarity between the motion of two
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Algorithm 2: Updating Hij [k]

Data: Hij [k − 1],Γij [k − 1], p̌ij [k]
Result: Hij [k]

if j ∈ Ni[k] then

Hij [k]←
[
p̌ij [k],Hij [k − 1]

]
Γij [k]←

[
k,Γij [k − 1]

]
else

Hij [k]← Hij [k − 1]
Γij [k]← Γij [k − 1]

end

/* remove last column if older than

Kp time instances */

if k −
[
Γij [k]

]
Lij

> Kp then

remove

([
Hij [k]

]
Lij

,
[
Γij [k]

]
Lij

)
end

different UAVs. We define the path similarity between the
j-th and l-th UAVs when observed by the i-th UAV as
follows:

σijl ,
1

L− 1

L−1∑
m=1

hm
ij · hm

il

‖hm
ij‖‖hm

il ‖
, (4)

hm
ij = [Hij ]m − [Hij ]m+1, (5)

where {hm
ij}L−1

m=1 is the recent history of the displacement
of the j-th UAV, estimated by the i-th UAV, and L =
min(Lij , Lil). The path similarity σijl ∈ [−1, 1] in (4) is the
moving average of the inner product between the estimated
displacement vectors of the j-th and l-th UAVs. �

Note that, when both UAVs move in the same
direction during the previous L time instants, then σijl = 1;
if they move in opposite directions, then σijl = −1; and, if
they move in orthogonal directions, then σijl = 0.

The path similarity σijl compares two different paths,
but it does not provide information about the individual
path. To this end, we introduce the following metric.

Definition 2 (Path Persistence): This metric
describes variability in the direction of motion of a UAV.
We define the path persistence of the j-th UAV when
observed by the i-th UAV as:

γij ,
1

Lij − 2

Lij−2∑
m=1

hm+1
ij · hm

ij

‖hm+1
ij ‖‖hm

ij‖
. (6)

The path persistence γij is the moving average of
the inner product between all consecutive displacement
estimations of the j-th UAV observed by the i-th UAV.
It measures how much the j-th UAV motion direction has
changed recently. �

When the j-th UAV moves in a straight line, then (6) is
maximized and γij = 1. On the other hand, when it moves
in a random fashion and the velocity often changes, γij will

have lower values. From (6), we can see that the argument
of the sum is the inner product between the normalized

vectors hm+1
ij and hm

ij . Thus,
hm+1
ij ·hm

ij

‖hm+1
ij ‖‖hm

ij‖
∈ [−1, 1].

Since (6) is the average of these normalized inner products,
we obtain γij ≥ −1.

For the purpose of the proposed approach, each UAV
in the swarm will belong to one of the two categories:

(i) Informed UAV which knows the goal location g ∈
R2 and plans a path to reach it. Because of this
information, its trajectory will present, in general, a
small number of direction changes (as small as the
environment allows), i.e., a high path persistence γij .

(ii) Uninformed UAV which does not know the goal g.
It will observe the motion of the other UAVs within the
swarm and use it to adaptively move in order to reach
the goal. As a consequence, the uninformed UAVs
will initially have more irregular motion with many
directional changes, resulting in low path persistence,
i.e., low values of γij .

Finally, we denote I the set that contains the indices
of all the informed UAVs, and Ī the set that contains the
indices of all the uninformed UAVs.

3. Problem Statement

We consider the problem of navigating a UAV swarm,
deprived of communication and global localization, in
an environment with randomly distributed obstacles.
The UAVs start at random locations inside a circle of radius
Rs ∈ R>0. Their mission is accomplished once all the UAVs
are inside the disk of radius Rg ∈ R>0, centered at the
goal location g. Some randomly selected UAVs belong to
the informed category described before, while the rest of
the UAVs belong to the uninformed category. The UAV
categories remain fixed during the whole mission execution.

As mentioned before, we assume that the UAVs are
equipped with on-board omnidirectional sensors [33–36]
that allow for estimating the position of the surrounding
UAVs, as well as detecting their IDs (IDs simplify
the separation of multiple observed neighbor UAVs and
retrieval of their relative position). We also assume that the
individual UAVs are equipped with the necessary sensors
to implement Simultaneous Localization and Mapping
(SLAM) [37] for localization and navigation.

We aim to design a decentralized control approach
for UAVs that only uses on-board sensors and computa-
tional resources to complete the collective navigation mis-
sion described above. Since the UAVs are deprived of com-
munication, they cannot exchange information like the goal
position g or the category of individual UAVs (informed or
uninformed). Thus, the uninformed UAVs must use the ob-
served UAVs’ trajectories to devise a motion plan to reach
g. In addition, UAVs must avoid collisions not only with
the obstacles populating the environment, but also among
themselves.

To this end, this article proposes the decentralized
control approach PACNav, which is composed of two
modules. The first module, described in Section 4,
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Figure 2: Finite state machine M for dynamic target
selection.

iteratively determines a target to be followed by the UAV.
The second module, described in Section 5, controls the
velocity of the UAV (ui) to reach the target provided by
the previous module while avoiding collisions.

4. Iterative Target Selection

At each time instant k, the i-th UAV determines a target
location di[k] ∈ R2 and devises a path to reach it. This
target can be the goal position g or the position of a
neighboring UAV potentially moving towards the goal g.
Thus, moving towards a target UAV can lead the i-th
UAV to the goal. This section discusses how to determine
the target di[k]. Let us start by defining the finite state
machine M = (S,Q,∆, q0,L), where:

• S = {Alone, Swarm,Goal} is the input alphabet,

• Q = {q0, q1, q2} represents the set of all possible states
of the state machine M (illustrated in Fig. 2),

• ∆ is the state transition function of M,

• q0 is the initial state, and

• L = ∅ is the set of final states. As the machine M is
designed to run indefinitely, there are no final states.

xi[k] ∈ S is the input to the state machine M of i-
th UAV at time k, and it is given by:

xi[k] =


Alone , |Ti[k]| = 0 ∧ i ∈ Ī,
Swarm , |Ti[k]| > 0 ∧ i ∈ Ī,
Goal , i ∈ I,

(7)

where Ti[k] ⊆ Ni[k] contains the indices of UAVs that are
the potential targets of the uninformed i-th UAV. The
objective is to design Ti[k] so that it contains the indices of
the UAVs which are potentially moving towards the goal g.
These UAVs are determined based on the following criteria:

• UAVs that are not in close proximity of the i-
th UAV. The trajectories of the UAVs close to
the i-th UAV are mostly influenced by the collision
avoidance mechanism (to avoid collision with the

i-th UAV). Consequently, at that moment, such
trajectories have little information about the motion
towards a target. So, the i-th UAV discards any UAV
that is too close, and it considers only UAVs beyond
a certain distance. In other words, the j-th UAV has
to satisfy ‖[Hij [k]]1 − pi[k]‖ ≥ Rf , with Rf ∈ R>0

being a design parameter, to be considered a potential
target by the i-th UAV.

• UAVs that are not moving towards the previous target
position di[k− 1]. Since the target is one of the UAVs
in Ti[k], any UAVs moving towards the previous target
di[k − 1] will not change the current direction of
motion of the i-th UAV. Thus, the i-th UAV discards
any j-th UAV that satisfies ‖[Hij [k]]1 − di[k − 1]‖ <
‖[Hij [k]]Lij − di[k − 1]‖.

• UAVs whose path history Hij [k] contains at least three
elements. The target is determined using the path
persistence metric (γij), which needs at least three
elements in the path history (see (6)).

The set of potential targets Ti[k] contains the indices of
the UAVs that satisfy all three conditions described above.

Given the current input xi[k], the state machine M
transitions into a state si[k] ∈ Q. If si[k] = q2 (i-
th UAV is informed), then the target is the goal position,
i.e., di[k] = g. If si[k] = q0 (i-th UAV is uninformed
and its set of potential targets is empty), then the UAV
does not move, i.e., di[k] = pi[k]. However, if si[k] = q1
(i-th UAV is uninformed and its set of potential targets
is not empty), then it proceeds to select di[k] using the
potential target set Ti[k]. This selection process is based
on the path similarity (σijl) and persistence (γij) metrics
defined in Section 2. First, note that the goal g is the
target position for informed UAVs and they are following
a path that will lead them towards it. Any changes of
direction in their movement is mainly due to the collision
avoidance mechanism reacting to the environment. As a
result, the informed UAV path history, in general, will
present high path persistence. Since all informed UAVs
have g as their target, then their path similarity will also
be large. Therefore, if an uninformed UAV follows a UAV
which has large path persistence and path similarities with
other UAVs, then it would very likely reach the goal g.
Thus, the target di[k], when si[k] = q1, is obtained as:

di[k] =
[
Hij? [k]

]
1
, (8)

with

j? = argmax
j∈Ti[k]

γij +
∑

l∈Ti[k]\j

σijl

 , (9)

where the first term in (9) is the path persistence (γij) of
the j-th candidate UAV, and the second term is the sum
of path similarities between the path of j-th UAV and the
rest of the potential UAV targets.

The selection heuristic presented in (8) is based on
the following observation. Initially, when the swarm starts
to move, only the informed UAVs will have high path
persistence. As the uninformed UAVs select the informed
ones as their target, the path similarity between the UAVs
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will increase. Additionally, as the uninformed UAVs keep
moving towards the informed ones, their path persistence
will also increase. As a result, the number of UAVs
with high path similarity and persistence increases over
time. Thus, the uninformed UAVs can select other
uninformed UAVs as targets and do not necessarily need the
information about the path history of informed UAVs. This
is crucial when the number of UAVs in the swarm is large
and all uninformed UAVs cannot observe the informed ones.
Experimental results in Section 6 verify and demonstrate
this selection process. To summarize, we have:

di[k] =


pi[k], si[k] = q0,[
Hij? [k]

]
1
, si[k] = q1,

g, si[k] = q2.

(10)

5. Target Tracking

After selecting the target, i.e., di[k], the i-th UAV
constructs and follows a path to the target while avoiding
collisions with the obstacles in the environment and with
the surrounding UAVs. This is achieved by controlling
the UAV velocity, i.e., the control input ui in (1), as:

ui[k] = ni[k] + ci[k], (11)

where ni[k] is the navigation control vector that will move
the i-th UAV towards the desired target di[k], and ci[k] is
the collision control vector that provides the i-th UAV with
collision avoidance capability. In the rest of this section, we
will explain the process from the i-th UAV perspective, and
to lighten the notation, we will drop the subscript i from
ni[k] and ci[k] variables.

5.1. Navigation control vector

The navigation control vector n[k] directs the UAV towards
the target position di[k]. This vector is obtained from the
shortest collision-free path from the UAV position (pi[k])
to the target (di[k]). To compute this path, we model
the environment as a 2-dimensional grid, resulting in a
discretization of the continuous space in R2. Each grid
coordinate either belongs to a set of occupied (obstacles)
points Co or free points Cf . The occupied points are
obtained by creating an online map of the environment.
This grid represents a weighted undirected graph G with
edges connecting coordinates to their neighbors, as shown
in Fig. 3. The graph G has an edge between the generic
coordinates (ax, ay) and (bx, by) if, and only if, both
coordinates belong to the free set Cf . The weight matrix
W for the coordinates in the set Cf is defined as:

[W]ab =


√

2 , bx = ax ± 1, by = ay ± 1,

1 , bx = ax ± 1, by = ay,

1 , bx = ax, by = ay ± 1.

(12)

The shortest path problem is formulated on the graph
G with weights given by W. To find the shortest path
from the UAV position p = (px, py) to the target position

Co Cf

1

1

1

√
2

√
2

(ax, ay)

Figure 3: Graph representation of the continuous space.
The edges (bxi , byi) are shown for the node at coordinate
(ax, ay) and depicted in gray. The free (Cf ) and occupied
(Co) sets are represented using white and yellow colors,
respectively.

d = (dx, dy) on G, we use the A? algorithm [38] with the
following heuristic:

h(ax, ay) =
√

(ax − dx)2 + (ay − dy)2. (13)

The simultaneous mapping and planning needed for
creating the graph is achieved using the methods described
in [20]. The shortest path P (this path is collision-free
since the graph G does not have any edges connecting the
occupied coordinates in the set Co) generated by the A?

algorithm is an ordered set of waypoints connecting the
i-th UAV position pi[k] to the target point di[k], whose
closest waypoint to the current UAV position is denoted
with the vector an ∈ P. Therefore, the navigation vector
n[k] is given by:

n[k] = fignI + f̄ignU , (14)

where fig = 1 if, and only if, the i-th UAV has goal
information, while f̄ig is its complementary function. So,
nI is the navigation vector if the UAV is informed;
otherwise, the navigation vector is nU .

As discussed in Section 4, the target selection process
relies on the high path persistence of the informed UAVs.
Thus, these UAVs must always move with a finite velocity
towards their target. However, in order to remain in
the LoS of other UAVs, the informed UAVs must slow down
for the swarm to catch up. Thus, the navigation vector for
informed UAVs is given as:

nI = max

V m, 1−

∑
j∈Ni

‖p̌ij − pi‖

2Rf |Ni|

Kn(an − pi), (15)

where V m ∈ (0, 1) is the minimum normalized velocity of
the informed UAV, and Kn ∈ R is a scaling coefficient to
rescale the position vector to form the velocity control input
(u). The second term in the max function depends on the
average distance from the UAVs in Ni. The magnitude of
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Algorithm 3: Regulating navigation vector

Data: Ni,an,pi
Result: nU
nU ← Kn(an − pi)
for j ∈ Ni do

/* projection parallel to p̌ij −pi */

s← nU ·(p̌ij−pi)
‖p̌ij−pi‖2 (p̌ij − pi)

/* projection orthogonal to p̌ij − pi
*/

o⊥ ← nU − s

nU ← min

(
1,
(
‖p̌ij−pi‖

Rf

)α)
s + o⊥

end

vector nI decreases as this average distance increases, which
prevents the informed UAV from wandering far away from
the swarm. The max function ensures that the UAV always
moves with a minimum velocity of V m.

Unlike the informed UAVs, the target of unin-
formed UAVs is the position of other UAVs in the swarm.
Hence, the navigation vector must be designed to prevent
collisions when moving towards other UAVs. The vector
nU for uninformed UAVs is obtained as described in Al-
gorithm 3. The projection parallel to the relative position
vector (p̌ij − pi) is iteratively scaled down if ‖p̌ij − pi‖
is less than parameter Rf . This scaling ensures that the
navigation vector will have a smaller component towards
the j-th UAV as the i-th UAV moves closer to it, which
is essential to prevent collisions. The parameter α ∈ R>0

determines the rate of change of the scaling term. The or-
thogonal component o⊥ is not scaled; thus, the motion in
direction orthogonal to (p̌ij − pi) remains unaffected.

5.2. Collision control vector

The obstacles in the environment pose a great challenge
when moving towards the target. The collision free path P
used to obtain the navigation vector is safe in an ideal case,
but it can fail to prevent collisions in the presence of motion
and sensor uncertainties. As the environment is unknown,
it is critical for the UAV to react to obstacles as soon as
they are detected by the sensors. Thus, reactive collision
avoidance is essential to ensure safety of the UAV. However,
the UAVs do not need to avoid all detected obstacles, but
only those that pose an immediate threat of collision. We
define with Oi[k] the set containing the position of all the
obstacles (e.g., trees, other UAVs) whose distance to pi

at time instant k is smaller than the reaction distance
Ro ∈ R>0. Increasing the value of Ro would result in
the UAV avoiding even far away obstacles. Thus Ro is
a design parameter that needs to be tuned according to the
obstacle density and the number of UAVs that make up the
swarm.

The reactive collision avoidance method used by
several state-of-the-art real-world systems [20, 39] often
suffers from deadlocks. Some examples are shown in

Fig. 4a. To prevent such deadlocks, we propose a novel
method to move away from the obstacles while avoiding the
deadlocks as much as possible. Unlike [39], the proposed
collision avoidance vector has components in both parallel
and orthogonal directions relative to the position vector
(pi − or), where or ∈ R2 is the position of the obstacle
considered. This collision vector is depicted in Fig. 4b. The
parallel component takes the UAV away from the obstacle,
while the orthogonal component moves it tangentially to
the circle of radius ‖pi − or‖ and centered at or. The
combined parallel and orthogonal motions not only move
the UAV away from the obstacle, but also around it.
This allows for avoiding deadlocks, such as those shown
in Fig. 4c.

The collision avoidance vector for an obstacle or ∈
Oi[k] is obtained by first generating two candidate unit
vectors ĉ+ and ĉ− as:

ĉ+ = R(+ϕ)
(pi − or)

‖pi − or‖
, (16a)

ĉ− = R(−ϕ)
(pi − or)

‖pi − or‖
, (16b)

where R(±ϕ) ∈ R2×2 denotes the rotation matrix along the
z-axis of the world frame FW , which is used to rotate the
relative vector (pi−or) by angle ±ϕ in the counterclockwise
direction. The angle ϕ is given as:

ϕ =
π

2Ro
‖pi − or‖. (17)

The angle ϕ varies with the distance to the obstacle. As
a result, ĉ+ and ĉ− have large components parallel to
(pi−or) when the UAV is close to the obstacle. This large
parallel component makes the reactive collision avoidance
more focused in the parallel direction, thus preventing
collisions. However, as the UAV moves away, ϕ increases
and ĉ+ and ĉ− have larger orthogonal components. The
orthogonal components focus on moving the UAV around
the obstacle.

The vectors ĉ+ and ĉ− denote two possible directions
of motion to avoid collision with the obstacle or (see
Fig. 4b). In order to keep the motion smooth, the vector
with the least angular distance to the previous control input
ui[k − 1] is used as the collision avoidance vector cr for
obstacle at or. Thus, the vector cr is obtained as:

cr = max

(
0,

1

‖pi − or‖
− 1

Ro

)
ĉr, (18)

with

ĉr = argmax
b̂∈{ĉ+,ĉ−}

(
b̂ · ui[k − 1]

‖ui[k − 1]‖

)
, (19)

where ĉr is a unit vector. The magnitude of cr is
inversely proportional to the relative distance to the
obstacle. Thus, the UAV reacts more strongly to nearby
obstacles in comparison to farther ones. Note that, cr

is a function of the obstacle position or ∈ Oi[k]. The
collision control vector c[k] (see (11)) is a superposition
of collision avoidance vectors of all the obstacles in Oi[k]
and is obtained as:

c[k] = Kc
∑
Oi[k]

cr, (20)
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p− o1

c1

c2

p− o2

n[k]
c1 + c2

obstacle-1

obstacle-2

(a) Common collision avoidance vector.

+ϕ

−ϕ p− o1

u[k − 1]

ĉ−

ĉ+

ĉr

obstacle-1

(b) Proposed collision vector candidates.

p− o1

c2
c1

p− o2

n[k]

u[k − 1]

c1 + c2

obstacle-1

obstacle-2

(c) Proposed collision vector in action.

Figure 4: Collision avoidance vectors. The UAV is denoted in blue and the obstacles in gray. Fig. (4a) Common collision
avoidance vector with components parallel to the obstacle position vector. Fig. (4b) Collision avoidance candidates
described in (16a) and (16b). Fig. (4c) Proposed collision avoidance vector, as described in (20), resulting from the
interaction with two obstacles.

where Kc is a scaling coefficient to rescale the summation.
The preventive collision avoidance incorporated in n[k],
along with the reactive collision avoidance from c[k], makes
the control input safe even in the presence of imperfect
sensor data.

6. Simulations and Experiments

In this section, we analyze the proposed collective
navigation approach PACNav, as presented in Sections 4
and 5. First, we evaluate the swarm behavior using realistic
simulations in Gazebo [40], exploiting the advantages of
software-in-the-loop simulations [41]. Then, we present
the results of real-world experiments carried out in a
natural forest. Videos with the simulated and real-world
experiments are available at http://mrs.felk.cvut.cz/

pacnav, while the source code has been made available as
open-source‡.

We introduce the order metric Ω[k] [42] that will be
used to analyze the collective motion of the swarm as:

Ω[k] =
1

N(N − 1)

∑
i,j∈Ni

vi[k] · vj [k]

‖vi[k]‖‖vj [k]‖ , (21)

where vi[k] is the instantaneous velocity of the i-
th UAV. This metric captures the correlation between the
movements of the agents and provides an indication about
the overall alignment of the member UAVs. The value of
Ω ∈ [−1, 1], where Ω = 1, means that all members of the
swarm are moving in the same direction. Ω < 1 implies
misalignment between the UAVs. Figure 5 illustrates the
order between two agents.

6.1. Simulated experiments

We simulate four different cases: (case 1A) a swarm
composed of N = 3 UAVs with only one informed UAV;
(case 1B) a swarm composed of N = 3 UAVs with two
informed UAVs; (case 2A) a swarm composed of N =
6 UAVs with two informed UAVs; and (case 2B) a swarm

Ω = 1 Ω = 0 Ω = −1

Figure 5: Illustrative scenarios of the order metric (21) for
two UAVs. UAVs are depicted in blue, while arrows denote
their direction.

g
X

Y

Rs

Figure 6: Simulated forest in the Gazebo simulator.
The UAVs are initialized in the shaded region, while the
goal is marked as the yellow dot. The red and green arrows
denote the X- and Y -axis of the reference system FW ,
respectively.

composed of N = 6 UAVs with four informed UAVs.
For each case scenario, we run 10 simulated experiments
by varying the spatial distribution of the trees in the

http://mrs.felk.cvut.cz/pacnav
http://mrs.felk.cvut.cz/pacnav
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simulated natural forest, while initializing the UAVs in the
same shaded region and using the same fixed goal g. A
realization of the overall scenario is depicted in Fig. 6.
Such an approach allowed us to statically characterize the
behavior of the swarm with respect to the changes in the
environment.

The density of the forest with randomly distributed
trees over an area A can be described as:

ρ =
N tπ(Ro)2

A
, (22)

where N t is the number of trees in the area A. We selected
a forest of dimensions 50 m× 50 m with density of ρ = 0.4.
This density allows six UAVs to simultaneously navigate
through the forest.

After trying various simulation setups, we observed
that densities larger than ρ = 0.6 make navigation in the
forest extremely difficult. Due to the high number of trees,
the UAVs are trying to avoid collisions most of the time.
Thus, the effect of the navigation vector n[k] in (11) is
overtaken by the collision avoidance vector c[k].

The task objective consists of navigating a swarm
composed of N -UAVs from a random initial position (inside
the shaded circle of radius Rg in Fig. 6) to the goal g, while
trying to keep the mean distance between UAVs below 2Rf

most of the time. The experiment is complete once all the
N -UAVs are within a Rg distance from the goal position.
Figures 7-10 present the results for the case 1A, case 1B,
case 2A, and case 2B, respectively. The plots in each figure
are arranged according to the increase completion time of
the experiment.

As described in Section 4, only the UAVs farther
than Rf are considered as potential targets by unin-
formed UAVs. Thus, to complete the mission, the unin-
formed UAVs must remain at a distance larger than Rf

from the informed ones. This is one of the reasons why
the mean distances between UAVs in the swarm are larger
than Rf in Fig. 7a, Fig. 8a, Fig. 9a, and Fig. 10a. We also
note that the minimum distance between UAVs is some-
times slightly smaller than Ro, which is when the reactive
collision avoidance mechanism of the UAVs becomes active.

Comparing case 1A and case 1B, we observe that
as the number of informed UAVs increases, the mean
completion time is reduced from 212.4 s to 189.5 s. This
is due to the fact that as the number of informed UAVs is
increased, it becomes more likely that an uninformed UAV
directly tracks an informed UAV. Similarly, increasing the
number of informed UAVs from case 2A to case 2B also
reduces the completion time from 231.4 s to 213.3 s. We
also observe that as the number of UAVs are increased
from three to six, the maximum and minimum distance
between grows larger (see Fig. 7a, Fig. 8a, Fig. 9a, and
Fig. 10a). This is because the UAVs need to avoid collisions
more often when there are more UAVs moving around.
This slows down their motion which leads to some of them
lagging behind the others. However, the proposed approach
successfully navigates the swarm in all the experiments with
three and even six UAVs.

Let us focus now on the order metric (21) plotted
in Fig. 7b, Fig. 8b, Fig. 9b, and Fig. 10b. This
metric measures the mean alignment between the velocity

Sym. Value Sym. Value Sym. Value

Rf 4.0 m Ro 2.5 m N t 104
Kc 1.0 s−1 Kn 1.2 s−1 g (20 m, 0 m)>

Table 1: List of parameters and their values for the
simulated experiments.

of UAVs [42]. When all UAVs move in the same direction,
the order takes values close to 1. However, when the UAVs
move in a disordered manner and each UAV moves in
a different direction, then the order metric takes lower
values. From the plots, we observe that, in general, the
order profile behaves in the following manner. In the
first stage, the uninformed UAVs are trying to figure out
where to go and which UAV to follow. Here, the order
value is low, but as they start to follow informed UAVs
(or other uniformed UAVs which are already following
informed UAVs), the order starts to increase. When all
the uninformed UAVs are locked and are tracking the
informed UAVs, the order metric remains almost constant
for some time. At this stage all the UAVs are moving, more
or less, in the same direction at a similar speed. In the next
stage, when the UAVs start to reach the goal, the UAVs lose
alignment and the order metric decreases. This is due to
the fact that, at the end of the experiment, the UAVs slow
down and move in different directions to avoid collisions.
Finally, when most of the UAVs have already reached the
goal, but some UAVs are lagging behind due to collision
avoidance with the trees, we observe a fourth stage. In
this stage, the order metric remains almost constant at low
values, as seen in the last three subplots in Fig. 7b, Fig. 8b,
Fig. 9b, and Fig. 10b. Table 1 reports the values of the
parameters used for the simulated experiments.

6.2. Real-world experiments

After validating the proposed approach in the simulated
experiments, we performed a real-world experiment in a
natural forest, as shown in Fig. 13. The complex and
random arrangement of trees in the forest serve as a
challenging environment to validate the feasibility and
robustness of the proposed approach. The forest had
a density of ρ = 0.25 (as calculated using (19)), and
the UAVs were initialized at arbitrary positions with Rs =
3.0 m. The swarm was composed of four quadrotor UAV
platforms (uav1, uav2, uav3, and uav4), each with a
diameter of 0.5 m (the dimensions of a quadrotor can be
approximated with a circle in the XY -plane) and a mass
of 2.6 kg. The UAV platforms were based on the DJI F450
quadrotor, equipped with an Intel NUC on-board computer
(an i7-8559U processor with 16GB of RAM) and the
Pixhawk flight controller. The software stack [43] was built
on the Noetic Ninjemys release of the Robot Operating
System (ROS) running on Ubuntu 20.04. The UAVs
were also equipped with a RPLIDAR rotary rangefinder
for SLAM [37], a Garmin laser rangefinder used as an
altimeter, and the UVDAR system [34] for direct relative
localization of UAVs. Further details on the hardware
setup can be found in [44, 45]. Fig. 11 shows the sensory
equipment layout on-board the UAVs.
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(b) Order between UAVs.

Figure 7: Relative distance and Order between UAVs in 10 independent simulated experiments with three randomly
initialized UAVs, where one UAV had goal information (case 1A) with Rs = 3.0 m and Rg = 6.0 m.
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Figure 8: Relative distance and Order between UAVs in 10 independent simulated experiments with three randomly
initialized UAVs, where two UAVs had goal information (case 1B) with Rs = 3.0 m and Rg = 6.0 m.
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Figure 9: Relative distance and Order between UAVs in 10 independent simulated experiments with six randomly
initialized UAVs, where two UAVs had goal information (case 2A) with Rs = 4.5 m and Rg = 8.5 m.

We selected uav3 as the informed UAV and assigned
the goal at g = (0 m, 40 m)> before the start of the

experiment. The rest of the UAVs were uninformed.
Since only one of the UAVs is informed, the experiment
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Figure 10: Relative distance and Order between UAVs in 10 independent simulated experiments with six randomly
initialized UAVs, where four UAVs had goal information (case 2B) with Rs = 4.5 m and Rg = 8.5 m.

UV Camera

UV LEDs

LiDAR

Figure 11: Quadrotor platform highlighting the UV LEDs
and the UV cameras used by the UltraViolet Direction And
Ranging (UVDAR) system for direct relative localization
of UAVs, and the 2D Light Detection and Ranging (LiDAR)
for SLAM.

constitutes the worst case scenario, which is useful to test
the limits of the proposed approach.

Figure 12 shows the trajectory of all four UAVs in
the forest, while Fig. 13 reports video snapshots from
the real-world experiment. The marks of the UAVs in
Fig. 12 correspond to the instants 0 s, 105 s, 180 s, and 300 s.
At the beginning of the experiment (0-105 s), all UAVs
except for uav3, move around to prevent any collisions with
other UAVs and surrounding trees. As shown in Fig. 14,
the UAVs target each other at the beginning, but when
their motion stabilizes, they select uav3 as the target. As
more and more UAVs select uav3 as their target, the swarm
motion becomes more directed towards the goal. After
150 s, all of the UAVs have selected and are tracking uav3

as their target. The swarm then reaches its goal at 300 s.
As shown in Figures 12 and 13, the UAVs move

through the forest as a cohesive group, while avoiding
obstacles and each other. Fig. 15 shows the relative
distance of the swarm as observed by each UAV. As can be
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Figure 12: Recorded trajectory from the real-world flight
experiment in the forest. The solid line represent the
trajectory of the uav3 (informed about the goal), while
dashed lines represent the trajectories of all other UAVs
(uav1, uav2, and uav4). Triangle and circle marks depict
the position of the UAVs at time instants 105 s and 180 s,
while plus and square marks show the initial (0 s) and final
(300 s) positions of the UAVs, respectively.

seen from the figure, after the initial 105 s, the mean relative
distance for uav1 and uav4 decreases rapidly as they select
the informed UAV as their target. Since the mean relative
distance is larger than Rf for a significant part of the
experiment, the uninformed UAVs were able to select uav3
as their target (see Fig. 14). Similarly, the order between
the UAVs also increases rapidly after the initial 105 s (see
Fig. 16). Note that, the order for all UAVs increases to a
value above 0.5 after the initial 105 s and remains so until
250 s. As the UAVs reach the goal near the end of the
experiment, they slow down and just move around the goal
position. This reduces the order drastically near the end
of the experiment. This behavior can also be observed in
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25 s 45 s

110 s 150 s

184 s 266 s

Figure 13: Video snapshots from the real-world experiment. The system evolution at different time instances is reported.
Colored solid circles highlight the UAV positions and their IDs according to the legend in Fig. 12.
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Figure 14: Target selected and tracked by each UAV
during the real-world experiment in the forest. Colored
lines represent the target (another UAV) selected by a
particular UAV.

the supplementary multimedia material. Since the order
is a measure of the alignment degree of the swarm, it is
apparent that the UAVs were moving in the same direction
during the experiment. This successfully demonstrates that
the proposed approach can be used for collective navigation,
even in the worst case scenario presented in this experiment.

The large number of trees and continuous reactive
motion of other members of the swarm made the
navigation challenging. While moving through the
environment, UAVs were often occluded by trees or
other UAVs. Since the UVDAR localization system uses
cameras for relative localization, these occlusions affected
its estimation accuracy. This is visible in Fig. 15 where the

estimated distance between UAVs has a high variance and
often jumps by large values. The estimation inaccuracy
also results in irregularity in the order (measure of velocity
alignment) of the UAVs, as shown in Fig. 16. However,
as the proposed path similarity and persistence metrics
(see Section 2) depend on path history rather than single
position estimates, the experiments show that proposed
approach successfully allows the UAVs to navigate in this
challenging environment.

7. Discussion

7.1. 2D vs 3D implementation

Let us discuss the difference between the 2D and 3D
implementation of the proposed approach. This article
focuses on a 2D implementation of PACNav, although a
3D implementation would be straightforward, providing
the UAVs an additional dimension for motion and further
facilitating collision avoidance. A 3D implementation of the
method herein would only require expansion of dimensions
for all the vector quantities. This change in dimension
would result in a slight increase in the calculations involving
vectors, but have no effect on the overall method. However,
a 3D representation of the environment will be needed
for SLAM and obstacle avoidance. This 3D representation
would require heavy sensors and computationally expensive
mapping algorithms. Moreover, 3D implementation of
the A? algorithm used for planning (Section 5.1) would
significantly increase the memory and computational load
of the overall system when running onboard the UAV.

The addition of heavy sensors and more computational
power would increase the size of the UAV, making it
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Figure 15: Recorded relative distances between the UAVs in the real-world experiment. The distance is calculated
using the position estimate from the UVDAR direct localization system. The shaded region contains all the distance
measurements and the solid line represents their mean at any given time instant.

difficult to operate in obstacle-rich environments, such as
forests. The 2D implementation of the PACNav approach
is sufficient for solving the navigation problem in many
practical scenarios (some presented in this article) while
also being practically feasible. Thus, it is unclear whether
the extra computational load and energy requirements for
3D implementation would justify its use.

7.2. Scalability

In a scenario free of obstacles, there would be a consistent
LoS between most of the UAVs throughout the entire
mission. Therefore, each UAV would simply react to
the motion of the other UAVs. However, in cluttered
environments, the UAVs often loose LoS due to occlusions
from environmental obstacles and other UAVs. As
a result, each UAV may only use local information
(from UAVs in LoS) to select a target. For a fixed
number of informed UAVs, increasing the number of
uninformed UAVs would mean that several UAVs do not
have LoS with any informed UAV. This would adversely
affect the collective navigation of the swarm.

For the forest simulated in our experiments, with a
group size greater than six UAVs, we observed splitting
of the swarm into sub-groups. Due to the loss of the
target by some of the uninformed UAVs, the UAVs farther
away from the informed ones were thus unable to move
towards the goal, and consequently unable to guide the

other uninformed UAVs to the goal. Moreover, the
uninformed UAVs were more likely to get stuck or left
behind, as they did not have an appropriate target to
follow. Our experiments suggest that splitting can be
avoided by composing the swarm with approximately 60
percent informed UAVs.

7.3. Design parameters

The design parameters of the PACNAV approach are Rf ,
Ro, Kn, Kc, Km, and Kp. In the following section, we
briefly discuss their purpose and effect on the PACNAV
approach.

• Rf is used to discard potential target UAVs that are
too close. The i-th UAV would consider the j-th UAV
as a potential target only if it is farther than the
distance Rf .

If Rf is too small, most of the UAVs close
to the i-th UAV are considered potential targets.
Since these UAVs are close to each other, their
trajectory is significantly influenced by the collision
avoidance mechanism that increases the distance
between the UAV. As a result, the UAVs will
not exhibit the guiding behavior that arises when
the UAVs are following a target. Thus, having a small
Rf in a cluttered environment can lead to frequent
changes in the choice of target UAV, as motion due to
collision avoidance will result in high path persistence
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Figure 16: Recorded Order between the UAVs during the real-world experiment. The dashed and solid lines represent
the recorded order and the simple moving average, respectively.

for most of the potential targets. This rapid change
slows down the collective movement of the swarm
while the UAVs try to follow the collision avoidance
motion, rather than the goal-directed motion of the
informed UAVs.

Alternatively, if Rf is too large, then the i-th UAV
might not be able to find any UAV as a potential
target, and the algorithm may fail.

• The parameter Ro describes the threshold distance
when reacting to the obstacles (18).

If Ro →∞, the UAV reacts to every single obstacle
around it. These reactions can slow down movement
as the UAV will unnecessarily try to avoid far-away
obstacles.

However, if Ro is too small, then the UAV will
become short-sighted. Consequently, the UAV might
not react in time to some of the surrounding obstacles,
which can lead to collisions.

• The parameter Kn is the coefficient of the navigation
vector of an informed UAV (15).

When Kn is large, the informed UAV will move to
the goal with a high velocity, which may result in
a loss of LoS with other UAVs when operating in a
cluttered environment. Moving at high velocities can
also affect the stability of the UAV when it tries to
avoid collisions with obstacles.

However, when Kn is too small, the UAV will move
more slowly, which in turn, slows down the entire

swarm.

• The parameter Kc is the coefficient of the collision
avoidance vector c (20). Small values of Kc would
result in insufficient and slow reaction to obstacles,
risking collisions. Large values of Kc would result
in violent reaction of the UAV in the presence of
obstacles. In the worst case (just as in the case of Kn),
this could negatively affect the stability of the UAV.

• Km is introduced in Algorithm 1. When the i-th UAV
loses LoS with the j-th UAV for more than Km time
instants, the j-th UAV is discarded from the set Ni.

When the value of Km is large, the UAVs will be
part of the set Ni long after LoS has been lost. Thus,
the position information of these UAVs will also be
outdated. As the navigation vector depends on the
number of UAVs in Ni, the i-th UAV will react to
the outdated position information, which can cause
unnecessary delays in the collective motion of the
entire swarm.

In contrast, when Km is small, the i-th UAV will
remove the UAVs as soon as the LoS is lost. As the
environment is cluttered with obstacles, the loss of LoS
would be frequent. Thus, at any time k, the i-th UAV
will only have a few UAVs in Ni, which in turn reduces
the options for potential targets. As a result, having
a small Km can severely disrupt the target selection
process and might produce erratic trajectories.

• Kp is introduced in Algorithm 2. It determines
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the length of the path history stored for each UAV.
This length is crucial for the path similarity (4)
and path persistence (6) metrics. The motion of
most of the UAVs is similar on very small and very
large timescales. As these metrics are calculated
on normalized vector quantities, the observed path
histories of multiple UAVs can have similar values
for metrics. Thus, for both small and large values
of Kp, the metrics would not reflect the path
information, resulting in a frequent change in the
selected target. When a UAV is frequently switching
between target UAVs, the overall motion of the swarm
can be slowed down.

8. Conclusion

This article has presented PACNav as a new bioinspired
decentralized approach for navigating a UAV swarm to the
desired goal as a compact group. In contrast to state-of-
the-art methods, the presented approach does not require
communication among the members or a global localization
system. Such an approach is highly beneficial in
demanding real-world conditions where global localization
is unavailable or has a high uncertainty and the swarm
size makes communication unfeasible. In the presented
approach, each UAV determines its future motion using the
information derived from only on-board sensors, mimicking
the sensory organs of animals moving in a group. The
resultant decentralized swarm is scalable as it is not limited
by communication bandwidth and information sharing.
The navigation method based on the metrics derived
from the collective motion of animals in nature ensures
coherent movement of the swarm and collision avoidance
with the environment and other members. The simulated
experiments in the Gazebo robotic simulator and a real-
world flight in a natural forest validated the effectiveness of
the presented approach. An intensive analysis carried out
in simulation demonstrated the reliability of the algorithm
concerning changes in the number of informed UAVs, as
well as different spatial distribution of trees in the forest.
The software framework used to deploy the algorithm on a
decentralized swarm of UAVs is provided as open-source‡
in order to facilitate further research and replication of the
obtained results.
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