
A Signal Temporal Logic Approach for Task-Based Coordination of Multi-Aerial
Systems: a Wind Turbine Inspection Case Study

Giuseppe Silanoa,1,g, Alvaro Caballeroc, Davide Liuzzad,e, Luigi Iannellid, Stjepan Bogdanf, Martin Saskaa

aDepartment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (emails: {giuseppe.silano,
martin.saska}@fel.cvut.cz).

bDepartment of Power Generation Technologies and Materials, Ricerca sul Sistema Energetico (RSE) S.p.A., Milan, Italy.
cGRVC Robotics Laboratory, University of Seville, Seville, Spain (email: alvarocaballero@us.es).

dDepartment of Engineering, University of Sannio in Benevento, Benevento, Italy (emails: {davide.liuzza, luigi.iannelli}@unisannio.it).
eFusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic

Development (ENEA), Frascati, Italy.
fFaculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia (email: stjepan.bogdan@fer.hr).

gCorresponding author

Abstract

The paper addresses task assignment and trajectory generation for collaborative inspection missions using a fleet of multi-rotors,
focusing on the wind turbine inspection scenario. The proposed solution enables safe and feasible trajectories while accommodating
heterogeneous time-bound constraints and vehicle physical limits. An optimization problem is formulated to meet mission objec-
tives and temporal requirements encoded as Signal Temporal Logic (STL) specifications. Additionally, an event-triggered replanner
is introduced to address unforeseen events and compensate for lost time. Furthermore, a generalized robustness scoring method
is employed to reflect user preferences and mitigate task conflicts. The effectiveness of the proposed approach is demonstrated
through MATLAB and Gazebo simulations, as well as field multi-robot experiments in a mock-up scenario.

Keywords:
Aerial Systems: Applications, Formal Methods in Robotics and Automation, Task and Motion Planning, Multi-Robot Systems.

© 2025 Elsevier. Accepted for Robotics and Autonomous Systems. Personal use of this material is permitted. Permission from Elsevier must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

1. Introduction

The increasing use of Unmanned Aerial Vehicles (UAVs)
for civilian infrastructure inspections has paved the way for
aerial vehicles with greater autonomy, thereby enhancing the
safety, speed, and accuracy of these inspections [1]. The ca-
pacity for repeated operations enables the monitoring of infras-
tructure changes over time, providing benefits to a variety of
applications such as inspecting oil and gas pipelines [2], wind
turbine blades [3], power transmission lines [4], towers and
bridges [5].

Presently, the most widespread approach is the use of UAVs
that are controlled by highly trained operators. These experts
are knowledgeable about the required information and site-
specific challenges, such as obstacles, weather conditions, and
time of day. On-board cameras and sensors are utilized to
gather data which is then processed by specialist teams for fur-
ther analysis. However, this approach has two major limita-
tions: First, flight operations can be hazardous for operators
who must maintain continuous visual contact with the UAVs,
especially in environments at height; Second, the process is
time-consuming, costly, and prone to human error [6, 7, 8].
Over time, various methods for automating the inspection task
have been proposed in the literature [5, 3, 4, 2, 1, 9]. Despite

this, significant challenges still exist in making inspections au-
tonomous, including the reliability of navigation systems, ra-
dio interference, limited battery life, and unpredictable envi-
ronmental events, which pose risks to mission success [10, 11].

Therefore, there is a clear need for safe and effective tech-
niques that can enhance maintenance and inspection operations,
reduce risks, and decrease costs for companies. Formal meth-
ods [12] can address these challenges by offering a concise way
to express complex mission specifications and time constraints
by leveraging their similarity to natural language commands
and the use of connectivity operators. Specifically, constraints
and objectives are encapsulated within a single temporal for-
mula. Notably, Signal Temporal Logic (STL) [13], particularly
in its robust formulation [14], employs the concept of quanti-
tative semantics, meaning that it not only verifies that the sys-
tem execution satisfies desired requirements, but also provides
a metric of how well these requirements are met, referred to as
robustness [14]. This results in an optimization problem aimed
at achieving high robustness scores values through the genera-
tion of a trajectory that satisfies the desired specifications while
ensuring feasibility within dynamic and constraint margins.

In this paper, wind turbine inspection (see Figure 1) serves
as a case scenario for presenting a multi-UAV motion planning
approach leveraging on STL specifications for collaborative in-
spection missions. This scenario illustrates sophisticated plan-
ning, involving the coordination of multi-rotor UAVs to avoid

Preprint submitted to Robotics and Autonomous Systems January 8, 2025

ar
X

iv
:s

ub
m

it/
61

18
04

1
 [

cs
.R

O
]

 8
 J

an
 2

02
5

Figure 1: A multi-rotor UAV conducting an inspection of a wind turbine, cap-
turing videos and pictures of the nacelle, rotor shaft and blades, as well as their
surrounding environment, to perform a preliminary remote evaluation [3].

collisions with each other and the environment, accomplish di-
verse time-bound inspection tasks, adhere to the vehicle’s dy-
namical constraints, and ensure comprehensive infrastructure
coverage. The mission requirements are formulated as an STL
formula, and the robustness of the formula is optimized by set-
ting up a nonlinear, non-convex max-min optimization prob-
lem. To manage the complexity of this nonlinear optimiza-
tion, a hierarchical approach is employed, starting with solving
a Mixed-Integer Linear Programming (MILP) planning prob-
lem and subsequently feeding the final STL optimizer.

1.1. Related work

Extensive research has been done in the fields of au-
tonomous navigation and coordination capabilities for UAVs [5,
6, 7, 10]. The primary objectives of this research have been
to: (i) enable UAVs to navigate autonomously and reach safe
conditions while avoiding unsafe behaviors (e.g., collisions,
crashes), and (ii) enhancing the vehicles’ ability to coordinate
for data collection and executing appropriate actions. Accurate
trajectory planning and task assignment are crucial in both of
these areas, not only for individual vehicles, but also for fleets
of UAVs with varying characteristics and capabilities that must
cooperate, avoid obstacles, and meet mission requirements si-
multaneously in the same operational area.

The literature on autonomous navigation presents a diver-
sity of point-to-point navigation approaches [15], including po-
tential field methods [16] and vehicle-routing problem formula-
tions [17]. Many studies prioritize drone mission endurance to
maximize coverage area by accounting for flight times. How-
ever, these approaches frequently overlook drone dynamics and
physical constraints, resulting in infeasible paths. The problem
then becomes a combinatorial optimization challenge, as exem-
plified by the well-known Vehicle Routing Problem (VRP) [17],
which becomes increasingly unsolvable within a reasonable
time frame as the complexity exponentially increases with the
number of vehicles and variables. In such cases, heuristic meth-
ods are often employed to simplify the complexity and identify
the most viable solution.

Research has explored various approaches for endow-
ing UAVs with coordination capabilities [18, 19, 20, 21]. Some
studies have focused on centralized multi-agent algorithms for
coordinating and planning safe and dynamically feasible tra-
jectories [18]. Others propose methods to convert the multi-
agent task allocation problem into a search space that can
be solved using the Particle Swarm Optimization (PSO) algo-
rithm [19]. Additionally, some approaches employ knowledge
transfer techniques between agents to achieve collision avoid-
ance and safety [20]. These approaches can efficiently coordi-
nate and compute trajectories for multiple agents [20, 21], but
do not guarantee that vehicles will complete tasks within spec-
ified time windows. Furthermore, encoding possibly different
complex temporal requirements into the optimization problem,
such as a requirement for multiple drones to visit designated
regions at specific times with certain behaviors while ensuring
safety, requires a systematic approach.

In addressing the motion planning challenge for multi-robot
systems, various approaches have been explored in existing lit-
erature [21, 22, 23]. Many solutions rely on abstract agent
dynamics [21] or abstract grid-based environment represen-
tations [22], integrating a discrete planner with a continuous
motion generator. While these methods can swiftly compute
collision-free motions for numerous agents, they fail to guaran-
tee adherence to physical constraints or task completion within
specified time frames. Additionally, they do not offer veloc-
ity and acceleration references, leaving the controller responsi-
ble for generating these signals. Conversely, when considering
multi-rotor models [23], solutions depend on information ex-
change among agents, posing difficulties in environments with
electromagnetic interference, such as in wind turbine inspection
tasks [24].

Recently, several studies have explored planning and co-
ordination techniques that incorporate advanced specifications
and temporal goals [25, 26, 27]. However, these problems often
prove challenging due to their nonlinear, non-convex optimiza-
tion max-min nature. Control Barrier Functions (CBFs) [25]
offer potential for finding robust and computationally efficient
trajectories, though they are limited to simpler scenarios and
lack soundness and completeness for the STL syntax. For
example, if two robots need to visit distinct regions within
overlapping time windows, CBFs may lead to infeasible prob-
lems [28]. Automata-based methods [26] can reduce complex-
ity by assigning specifications to individual agents. However,
constructing the required transition system is a significant bur-
den. Sampling-based techniques [27], encode STL specifica-
tions as linear and boolean constraints, offering a solution to
the challenge of finding optimal solutions. However, these tech-
niques typically assume that each robot is specialized in specific
skills. Most of these methods end up with a dynamic program-
ming formulation, which suffer from dependency on the initial
solution [29].

1.2. Contributions
In this paper, we introduce a novel approach to multi-UAV

task assignment and trajectory generation for collaborative in-
spection missions, with wind turbine inspection serving as our

2

case study. Our method utilizes STL as a specification language
to express the mission’s objectives and time constraints. These
objectives include collision avoidance between the UAVs and
the environment, as well as the completion of time-bound in-
spection tasks, such as reaching specified target areas and en-
suring comprehensive coverage of the infrastructure. Address-
ing these requirements results in a complex nonlinear, non-
convex max-min optimization problem typically solved using
dynamic programming. However, finding an optimal solu-
tion in a reasonable time frame can be challenging due to the
solvers’ tendency to get stuck in local optima based on the ini-
tial guess [29]. To tackle this challenge, we propose a two-step
hierarchical approach that initially simplifies the mission into
a Mixed-Integer Linear Programming planning problem formu-
lated on a subset of the inspection objectives and subsequently
seeds the global STL optimizer. The approach extends our prior
work [30] by:

• Addressing collaborative inspection mission complexi-
ties and computing dynamically feasible trajectories with
diverse time bounds and vehicle constraints (Section 4.1).

• Introducing a new method for computing the initial guess
solution (Section 4.2) considering heterogeneous con-
straints on vehicle velocity and acceleration.

• Incorporating an event-triggered replanner (Section 4.3)
to modify the planned trajectory in case of disturbances
or unexpected events, ensuring the new trajectory aligns
with the previous optimal solution by compensating for
lost time.

• Including a weighted generalization of the STL robust se-
mantics [31] to capture user preferences and address is-
sues arising from conflicting tasks when mission accom-
plishment cannot be achieved (Section 4.4).

• Assessing the method’s overall performance through
MATLAB simulations to evaluate its effectiveness in
meeting mission specifications and the efficiency of in-
corporating the proposed initialization procedure (Sec-
tion 5). Additionally, validation is conducted via Gazebo
simulations [32] and field experiments in a mock-up set-
ting (Section 5.4).

The advantages our approach are twofold. Firstly, we em-
ploy an MILP planning formulation that operates on a simpli-
fied version of the problem, eliminating the need for linear or
linearizable constraints and system dynamics, thereby facilitat-
ing the search for a global solution. Secondly, we utilize a con-
cise and unambiguous STL formulation, enabling end-users to
specify drone behavior in easily understandable terms, such as
target areas to inspect and infrastructure zones to cover, while
considering for explicit time requirements. In contrast to ex-
isting solutions [25, 26, 27], our approach utilizes a smooth ro-
bustness function to incorporate a quantitative robust semantics,
a feature not achievable with automata-based methods [26].
Furthermore, our approach addresses the issue of overestimat-
ing the dimensions of the robot and obstacles, which can lead
to more conservative maneuvers with CBFs [25].

Also, one significant advantage of our approach using STL
over point-to-point navigation and vehicle-routing problem for-
mulations, as listed in Section 1.1, is its ability to encapsulate
intricate temporal constraints and requirements in a formal and
expressive manner. By integrating natural language commands,
temporal and Boolean operators, and task and motion planning,
we can devise trajectories that fulfill mission objectives while
considering the dynamics and physical constraints of the multi-
rotor systems. Moreover, the proposed method allows for han-
dling coordination among multiple drones to ensure the com-
pletion of all required inspections without specifying the task
(the paper presents a general method applied to a particular case
scenario) that a single vehicle must accomplish. Existing meth-
ods for planning from STL specifications include abstraction-
based methods, mixed-integer optimization, and nonlinear op-
timization. Abstraction-based methods [33] construct a discrete
abstraction of the continuous state space, but suffer from scala-
bility issues. Mixed-integer optimization methods [34, 35] pro-
vide soundness and completeness (see Section 3.4) guarantees
but become intractable with longer planning horizons. Nonlin-
ear optimization approaches [36, 37] offer increased generality
and scalability but are prone to local optima based on initial
guesses. Our two-step hierarchical approach addresses these
challenges by initially simplifying the mission into a MILP
planning problem and then seeding the global STL optimizer.

2. Problem Description

This paper explores the problem of utilizing a fleet of multi-
rotor UAVs to collaboratively perform inspection missions,
with a focus on wind turbine inspection as a case study. This
entails capturing videos and pictures of the wind turbine and its
surroundings to conduct a preliminary remote evaluation.

The inspection procedure is divided into two distinct tasks:
pylon inspection and blade inspection. The pylon inspection
involves visiting designated areas of interest, modeled as 3D
spaces, to assess the structural integrity of mechanical com-
ponents, such as the nacelle and rotor shaft. The objective of
this inspection is to identify potential hazards, like corrosion or
damage, that may affect the stability and safety of the pylon.
In contrast, the blade inspection requires obtaining scans that
cover the entire surface of the blade. This need arises due to
external factors, such as wind, rain, hail, or bird strikes, that
can cause cracks or coating damage, potentially impacting the
blades’ performance. To ensure inspection accuracy, the UAVs
must maintain a specific distance from the blade and move at a
controlled speed to avoid blur effects.

The time needed to complete both inspections may differ
based on the wind turbine’s size, which should be considered
during the planning phase along with the vehicle’s dynamical
constraints. The UAVs in this scenario are assumed to be multi-
rotors, primarily quadrotors, with heterogeneous velocity and
acceleration limitations. The objective is to plan trajectories for
the UAVs to efficiently complete the inspection mission while
also satisfying the aforementioned constraints and maintaining
a safe distance from obstacles and other UAVs in the environ-
ment. It is assumed that a map of the environment, including a

3

polyhedral representation of obstacles like the pylon and blades,
is available prior to the inspection mission.

3. Preliminaries

This section introduces the fundamental concepts required
to grasp the contributions of this paper. We will provide a brief
overview of the key system variables, Signal Temporal Logic,
and its robustness, smooth robustness approximations, the STL
weighted generalization, and the STL motion planning frame-
work upon which the current contribution is built. To enhance
readability, a summary of the notation is also provided in Table
1.

3.1. System definition

Let us consider a discrete-time dynamical model of a
drone represented in the general form xk+1 = f (xk, uk), where
xk+1, xk ∈ X ⊂ Rn are the next and current states of the system,
respectively, and uk ∈ U ⊂ Rm is the control input. Let us
also assume f : X×U → X is differentiable in both arguments.
Therefore, given an initial state x0 ∈ X0 ⊂ Rn and a time vec-
tor t = (t0, . . . , tN)⊤ ∈ RN+1, with N ∈ N>0 being the number of
samples that describe the evolution of the system with sampling
period Ts ∈ R>0, we can define the finite control input sequence
u = (u0, . . . , uN−1)⊤ ∈ RN as the input for the system to attain
the unique sequence of states x = (x0, . . . , xN)⊤ ∈ RN+1. Let
us also introduce the notation FW and FB to denote the world
frame and body frame reference systems, respectively.

Hence, we can define the state sequence x and con-
trol input sequence u for the d-th multi-rotor UAV
as dx = (dp(1), dv(1), dp(2), dv(2), dp(3), dv(3))⊤ and du =

(da(1), da(2), da(3))⊤, with dp(j), dv(j), and da(j) representing ve-
hicle’s position, velocity, and acceleration sequences along the
j-axis of the world frame FW , respectively, with j = {1, 2, 3}.
Finally, the k-th elements of dp(j), dv(j), da(j), and t, are denoted
as d p(j)

k , dv(j)
k , da(j)

k , and tk.
The model xk+1 = f (xk, uk) considered for the drone is

the one provided in [30], where the motion primitives are en-
coded with splines, and here simply denoted, for each j-axis,
as (d p(j)

k+1,
dv(j)

k+1,
da(j)

k+1)⊤ = dS(j)(d p(j)
k , dv(j)

k , da(j)
k). Next, we will

use a label in the upper left to indicate a specific drone to which
the dynamic model refers, while we will not use labels to indi-
cate the vector stack of all drone variables.

3.2. Signal temporal logic

STL concisely and unambiguously describes real-valued
signal temporal behavior [13]. Unlike most used planning al-
gorithms [38], STL encapsulates all mission specifications in
a single formula φ. For example, the statement “visit regions
A and B every 10 s, while always stay at least 1 m away from
region C” can be expressed as a single STL formula, φ. The
syntax and semantics of STL are detailed in [13, 14], but is
omitted here for brevity.

In brief, an STL formula φ is constructed from a set of pred-
icates pi, where i ∈ N0, representing atomic prepositions like
belonging to a region or comparisons of real values. Formally,

Table 1: Notation–System variables, general symbols, and reference frames.

FW , FB world and body reference frames
N, Ts, t, tk, δ number of samples, sampling period,

time vector and its k-th element, mem-
bers of the UAV fleet

dx, du state and control input sequences of the
d-th UAV

M, AP Set of real-valued functions and the
corresponding predicates

dp, dv, da, dψ,
d•k

position, velocity, acceleration, and
heading of the d-th UAV in FW and
their k-th elements

dS(j) splines encoding the drone motion
primitives

φ, I, pi, µi, λ STL formula, generic time interval, i-th
predicate and its real-valued function,
tunable parameter for ρ̃φ(x)

¬, ∧, ∨,=⇒ negation, conjunction, disjunction, and
implication Boolean operators

♢, □,⃝,U eventually, always, next and until tem-
poral operators

ρφ(x, tk),
ρ̃φ(x, tk)

robustness and smooth robustness val-
ues of the STL formula φ

dv(j), da(j), d v̄(j),
dā(j)

lower and upper limits for the velocity
and acceleration of the d-th UAV along
the j-axis

dφws, dφobs, dφdis STL safety requirements
dφtr, dφbla STL task requirements
dφhm STL mission completion requirement
TN , Tins, Tbla mission duration, pylon and blade cov-

erage time intervals
Nobs, Ntr, Nbla number of obstacles, number target ar-

eas, and number of blade sides to cover
p(j)
•

, p̄(j)
• generic vertices of the rectangular re-

gions defining safety, task, and mission
requirements

Γdis, Γbla, ε, ζ mutual distance threshold, minimum
required distance away from the blade,
maneuverability and safety margins

G, V, E, W, D,
T , O

graph, set of vertices, graph edges and
weights, set of drones, set of target ar-
eas and blade extreme points, and set of
depots

τ, o•, ei j, wi j, zi j cardinality of T , generic element of O,
E andW, integer variable for the MILP
solution

N in
i , Nout

i in-neighborhood and out-
neighborhood sets of nodes

d v̂(j), dâ(j), d v̌(j),
dǎ(j)

lower and upper limits for the revised
velocity and acceleration of the d-th
UAV along the j-axis

t̄, E, η, t̄k, t̂k event-trigger time vector and its dimen-
sion, event threshold value, generic en-
try of t̄, and time instance associated
with the next task

ωρφ(ω, x, tk), ω weighted version of the STL robustness
score and corresponding weight vector

dTc, dωc thrust and angular velocities of the d-th
UAV4

let M = {µ1, . . . , µL} be a set of real-valued functions of the
state, µi : X → R, and the corresponding set AP B {p1, . . . , pL}

of predicates. Each predicate defines a set over the system state
space, specifically pi defines {x ∈ X | µi(x) ≥ 0}.

STL’s grammar uses temporal operators, such as until (U),
always (□), eventually (♢), and next (⃝), and logical operators
like and (∧), or (∨), negation (¬), and implication (=⇒), that
act on atomic propositions over a non-singleton interval I ⊂ R.
Thus, an STL formula φ is built recursively from the predicates
pi and using the grammar, as:

φ B ⊤|p|¬φ|φ1 ∨ φ2|φ1 ∧ φ2|□Iφ|♢Iφ| ⃝I φ|φ1UIφ2,

where φ1 and φ2 are STL formulae. These propositions are
simple true (⊤) or false (⊥) statements, such as belonging to a
particular region or comparing real values. An STL formula φ
is valid if it evaluates to true (⊤) and invalid (⊥) otherwise. For
example, φ1UIφ2 requires that φ2 holds within the time interval
I and that φ1 holds uninterrupted until that point.

If a formula φ is time-bounded, it contains no unbounded
operator. The bound can be interpreted as the horizon of the
future predicted system trajectory x that is needed to calculate
the satisfaction of φ. Generally, to evaluate whether such a for-
mula φ holds on a given trajectory, only a finite-length prefix
of that trajectory is needed [39, 40]. In this paper, we will only
consider bounded time intervals I.

3.3. Robust signal temporal logic

Uncertainties and unforeseen events can affect the satisfac-
tion of an STL formula φ (see Section 3.2). Robust semantics
for STL formulae [13, 14, 41] account for these factors by en-
suring a margin of satisfaction, measuring how well (poorly) a
given specification is satisfied. The robustness metric, ρ, guides
the optimization process in finding the best feasible solution to
meet mission requirements. It can be formally defined using the
following recursive formulae:

ρpi (x, tk) = µi(x(tk)),
ρ¬φ(x, tk) = −ρφ(x, tk),

ρφ1∧φ2 (x, tk) = min
(
ρφ1 (x, tk), ρφ2 (x, tk)

)
,

ρφ1∨φ2 (x, tk) = max
(
ρφ1 (x, tk), ρφ2 (x, tk)

)
,

ρ□Iφ(x, tk) = min
t′k∈[tk+I]

ρφ(x, t′k),

ρ♢Iφ(x, tk) = max
t′k∈[tk+I]

ρφ(x, t′k),

ρ⃝Iφ(x, tk) = ρφ(x, t′k),with t′k ∈ [tk + I],
ρφ1UIφ2 (x, tk) = max

t′k∈[tk+I]

(
min

(
ρφ2 (x, t′k)

)
,

min
t′′k ∈[tk ,t

′
k]

(
ρφ1 (x, t′′k

))
,

where tk + I represents the Minkowski sum of scalar tk and
time interval I. These formulae, as said, are recursively defined
from predicates pi and their corresponding real-valued function
µi(x(tk)), which are true if their robustness value is greater than
zero and false otherwise.

The overall behavior of the formula is logical, becoming
false if any predicates within it are false. In simpler terms, the

STL formula φ1 ∨ φ2 is satisfied if φ1 or φ2 is true. Eval-
uation proceeds by applying logical and temporal operators
(such as always, eventually, conjunction, etc.) from the in-
nermost to the outermost part of the formula. For example,
this could entail conditions like being inside a target region or
outside an obstacle region, each defined by a specific set of
predicates. More comprehensive explanations can be found in
references [13, 14, 41]. In this context, we say that x satis-
fies the STL formula φ at time tk (shortened as x(tk) |= φ) if
ρφ(x, tk) > 0, and violates it if ρφ(x, tk) ≤ 0. Furthermore, the
value of ρφ(x, tk) represents “how well” the formula is satisfied
(if ρφ(x, tk) > 0) or “how much” is violated (if ρφ(x, tk) ≤ 0),
implicitly introducing a robustness criterion.

Hence, we compute control inputs u, maximizing robust-
ness ρφ(x, tk) over finite state x and input sequences u, with u
and x obeying to system dynamics. The optimal sequence for
input and states is denoted as u⋆ and x⋆. A larger ρφ(x⋆, tk) sig-
nifies a more resilient system behavior against disturbances, al-
lowing the system to withstand greater values of the latter with-
out violating the STL specification. To simplify notation, we
will use ρφ(x) instead of ρφ(x, 0) when tk = 0.

3.4. Smooth approximation

The calculation of ρφ(x) incorporates non-differentiable
functions like min and max. To tackle the computational chal-
lenges linked with these non-differentiable functions, it is ad-
vantageous to utilize a smooth approximation, represented as
ρ̃φ(x), of the robustness function ρφ(x). This smoothed approx-
imation offers a more manageable and computationally efficient
solution. Hence, let λ ∈ R>0 be a tunable parameter. The
smooth approximation of the min and max operators with β
predicate arguments is [42]:

max(ρφ1 , . . . , ρφβ) ≈
∑β

i=1 ρφi e
λρφi∑β

i=1 eλρφi

,

min(ρφ1 , . . . , ρφβ) ≈ −
1
λ

log

 β∑
i=1

e−λρφi

 .
Compared to our prior work [30], we adopt an asymptoti-

cally complete and smooth everywhere approximation, which
resembles the widely recognized Log-Sum-Exponential ap-
proximation [14]. The proposed approximation does not over-
estimate the max operator and, as a result, is sound. Sound-
ness indicates that a suitable sequence u⋆ with strictly posi-
tive smooth robustness (ρ̃φ(x) > 0) satisfies the specification φ,
whereas a sequence u⋆ with strictly negative smooth robustness
(ρ̃φ(x) < 0) violates it. The term asymptotical completeness im-
plies that the resulting approximation ρ̃φ(x) for the final robust-
ness formula can approach the true robustness ρφ(x) arbitrar-
ily closely as λ tends towards infinity (λ → ∞). Furthermore,
the proposed approximation is smooth everywhere, possessing
infinite differentiability, thus making it viable to use gradient-
based optimization algorithms to ascertain a solution [42]. By
increasing λ, the approximation can better reflect the true ro-
bustness (see Section 3.3).

5

3.5. Weighted signal temporal logic

In many applications, high-level temporal logic specifica-
tions may include obligatory or alternative sub-specifications
or timings with varying importance or priorities. Traditional
STL lacks the expressivity to specify these preferences. For ex-
ample, consider φ = ♢I(x > 0), which is satisfied if x becomes
greater than 0 within the time interval I. However, satisfaction
at earlier times within this deadline may be more desirable.

Assisting importance and priorities becomes crucial, es-
pecially when a formula contains conflicting obligatory sub-
formulae. Therefore, an extension of STL, known as weighted-
STL (wSTL) [31, 43, 44], can be employed to enable user pref-
erences such as priorities and importance. The syntax of wSTL
is an extension of the STL syntax, and is defined as:

φ B ⊤|p|¬φ|
N∧

i=1

ωφi|

N∨
i=1

ωφi|□I
ωφ|♢I

ωφ| ⃝I
ωφ|ωφ1UI

ωφ2,

where the logical true (⊤) and false (⊥) values, the predicate p,
and all the Boolean and temporal operators have the same in-
terpretation as in STL (as discussed in Section 3.2). The weight
ω = [ωi]N

i=1 ∈ RN
>0 assigns a positive weight ωi to each sub-

formula i of the N sub-formulae of the Boolean operators, and
ω = [ωtk]tk∈I ∈ R|I|>0 assigns a positive weight ωtk to time tk in
the interval I of the temporal operators and |I| denotes cardinal-
ity of I.

The weights ω capture the importance of obligatory spec-
ifications for conjunctions (∧) or priorities of alternatives for
disjunctions (∨). Similarly, ω captures the importance of sat-
isfaction times for temporal always (□) or priorities of satis-
faction times for temporal eventually (♢) over the interval I.
Throughout the paper, if the weight ω associated with an oper-
ator (Boolean or temporal) in a wSTL formula ωφ is constant
1, we drop it from the notation. Thus, STL formulae are wSTL
formulae with all weights equal to 1.

Given a wSTL specification ωφ, the weighted robustness
score ωρφ(ω, x, tk) is recursively defined as:

ωρpi (ω, x, tk) = µi(ω, x(tk)),
ωρ¬φ(ω, x, tk) = −ρφ(ω, x, tk),

ωρφ1∧φ2 (ω, x, tk) = min
(
ρφ1 (ω, x, tk), ρφ2 (ω, x, tk)

)
,

ωρφ1∨φ2 (ω, x, tk) = max
(
ρφ1 (ω, x, tk), ρφ2 (ω, x, tk)

)
,

ωρ□Iφ(ω, x, tk) = min
t′k∈[tk+I]

ρφ(ω, x, t′k),
ωρ♢Iφ(ω, x, tk) = max

t′k∈[tk+I]
ρφ(ω, x, t′k),

ωρ⃝Iφ(ω, x, tk) = ρφ(ω, x, t′k),with t′k ∈ [tk + I],
ωρφ1UIφ2 (ω, x, tk) = max

t′k∈[tk+I]

(
min

(
ρφ2 (ω, x, t′k)

)
,

min
t′′k ∈[tk ,t

′
k]

(
ρφ1 (ω, x, t′′k

))
,

where, as discussed for STL (see Section 3.2), tk + I represents
the Minkowski sum of scalar tk and time interval I. These for-
mulae consist of predicates, pi, along with their corresponding
weighted real-valued function µi(ω, x, tk), which are true if their
robustness value is greater than zero and false otherwise.

3.6. STL motion planner
By encoding the mission specifications detailed in Section 2

as an STL formula φ and replacing its robustness ρφ(x, tk) with
the smooth approximation ρ̃φ(x, tk) (see Section 3.4), the prob-
lem of generating trajectories for the multi-rotors can be formu-
lated as [30]:

maximize
d p(j) , d v(j) , d a(j)

d∈D

ρ̃φ(p(j), v(j))

s.t. dv(j) ≤ dv(j)
k ≤

d v̄(j),

da(j) ≤ da(j)
k ≤

dā(j),

ρ̃φ(dp(j), dv(j)) ≥ ζ,
dS(j),∀k = {0, 1, . . . ,N − 1}

, (1)

where dv(j) and da(j) represent the lower limits of velocity and
acceleration, respectively, while d v̄(j) and dā(j) denote their re-
spective upper limits, for drone d along each j-axis of the world
frame FW . Here, D denotes the set of drones, and p(j) and v(j)

concatenate the position and velocity of all drones. The mini-
mum robustness threshold, denoted as ρ̃φ(p(j), v(j)) ≥ ζ, acts as
a safety buffer for ensuring the satisfaction of the STL formula
φ even in the presence of disturbances. As illustrated in [22],
disturbances below magnitude ζ do not result in formula vio-
lations. The specific value of ζ can be determined such that
|ρφ(x) − ρ̃φ(x)| ≤ ζ. Moreover, the shorthand notation dS(j)

refers to the motion primitives satisfying the dynamics of drone
d along each j-axis, as explained in Section 3.1. For simplicity,
we assume symmetric velocity and acceleration limits.

4. Problem Solution

In this section, we introduce a method to generate trajecto-
ries for a fleet of δ multi-rotor UAVs belonging to set D, i.e.,
δ = |D|. The mission specifications have been described in
Section 2 and are expressed as an STL formula φ (Section 4.1).
The motion planner is a nonlinear, non-convex max-min opti-
mization problem that accounts for mission specifications and
physical constraints. However, finding optimal solutions within
a reasonable time frame can be challenging because solvers eas-
ily get stuck in local optima depending on the initial guess [29].
To overcome this challenge, we propose a two-step hierarchi-
cal approach that simplifies the mission into an MILP plan-
ning problem (Section 4.2) before seeding the global STL op-
timizer (see Section 3.6). Our framework also includes an
event-triggered replanner to cope with disturbances or unfore-
seen events (Section 4.3), as well as user preferences to handle
potential issues arising from conflicting tasks (Section 4.4).

4.1. Specification mapping
This section aims to design the mission specifications for

the problem described in Section 2 and derive the correspond-
ing STL formula, φ. While a wind turbine inspection could
theoretically be performed safely with just one UAV, practi-
cal considerations necessitate cooperative execution by mul-
tiple UAVs. Factors such as efficiency, coverage area, time-
saving, enhanced safety, and redundancy in case of unexpected

6

events can benefit from the involvement of multiple drones to
ensure mission success. Therefore, the wind turbine inspec-
tion is encoded as a cooperative execution by the UAVs to meet
safety and task requirements.

The safety requirements must be met throughout the entire
operation time TN . Hence, the UAVs must adhere to three spec-
ifications: remaining within the workspace (dφws), avoiding ob-
stacles to prevent collisions (dφobs), and keeping a safe distance
from other UAVs (dφdis). The task requirements include pylon
and blade inspections. To inspect the pylon (dφtr), the UAV
must visit all target areas once and remain there for at least
an inspection time Tins. In order to inspect the blade (dφbla),
the UAV must approach the leading edge, maintain a certain
distance from the blade surface while covering it at a limited
speed, and reach the rotor shaft before turning to inspect the
other side of the blade surface. The coverage task must last at
least Tbla.

Notably, for the case scenario, we assume that each UAV
can only cover some blades or targets, reflecting a scenario
where some drones may be equipped with specialized instru-
ments or sensors, resulting in their heterogeneous physical ca-
pabilities. This assumption necessitates coordination among
multiple UAVs to ensure completion of all required inspections.
Here, we do not specify which task (pylon or blade inspection) a
single drone must accomplish. Instead, we allow the framework
to choose the most convenient option, while also leaving open
the possibility of accomplishing both tasks. Finally, each UAV
must return to its initial position after completing its inspection
operations (dφhm) and remain there thereafter.

All the above mission specifications can be represented in
the STL formula:

φ =
∧
d∈D

□[0,TN](dφws ∧
dφobs ∧

dφdis)∧

Ntr∧
q=1

♢[0,TN−Tins]

∨
d∈D

□[0,Tins]
dφtr,q ∧

Nbla∧
q=1

♢[0,TN−Tbla]

∨
d∈D

□[0,Tbla]
dφbla,q ∧∧

d∈D

♢[1,TN]
dφhm ∧∧

d∈D

□[1,TN−1]

(
dφhm=⇒⃝[0,tk+1]

dφhm

)
.

(2)

Here, the STL formula φ comprises six specifications (dφws,
dφobs, dφdis, dφtr, dφbla, and dφhm) and three time intervals (TN ,
Tins, and Tbla). The following equations describe each of these
specifications:

dφws =
∧3

j=1
dp(j)∈ (p(j)

ws
, p̄(j)

ws), (3a)

dφobs =
∧3

j=1
∧Nobs

q=1
dp(j)< (p(j)

obs,q
, p̄(j)

obs,q), (3b)

dφhm =
∧3

j=1
dp(j)∈ (p(j)

hm
, p̄(j)

hm), (3c)
dφdis =

∧
{d,m}∈D,d,m ∥

dp − mp∥ ≥ Γdis, (3d)
dφtr,q =

∧3
j=1

dp(j)∈ (p(j)
tr,q
, p̄(j)

tr,q), (3e)

Figure 2: Wind turbine inspection scenario. Target areas and blade extreme
points are represented in blue and green, respectively, while the drones’ starting
points are in magenta.

dφbla,q =
∧3

j=1
dp(j)∈ (p(j)

bla,q
, p̄(j)

bla,q) ∧

distbla,q(dp) ∈ (Γbla − ε,Γbla + ε), (3f)

where (3a) constrains the position of each UAV to remain
within the designated workspace, with p(j)

ws
and p̄(j)

ws denoting the
working space limits. Obstacle avoidance and mission comple-
tion operation are defined in (3b) and (3c), respectively, where
Nobs denotes the number of obstacles in the map. Rectangu-
lar regions with vertices denoted by p(j)

obs,q
, p(j)

hm
, p̄(j)

obs,q, and p̄(j)
hm

define obstacle and drone’s initial position areas. (3d) encodes
the safety distance requirement, where Γdis ∈ R>0 represents
a threshold value for the drones mutual distance. Finally, in-
specting the pylon and blade is done with (3e) and (3f), respec-
tively, where Ntr and Nbla indicate the number of target areas
and blade sides to cover, respectively. The vertices p(j)

tr,q
, p(j)

bla,q
,

p̄(j)
tr,q, and p̄(j)

bla,q identify the target and covering areas, with the
leading edge and rotor shaft serving as the extreme points for
each side of the blade surface. The function distbla,q(·) in (3f)
calculates the Euclidean distance between the position of the
UAV (dp) and the corresponding point on blade q, determined
by projecting the UAV’s position orthogonally onto the surface
of the blade. Its role in (3f) is to enforce a certain distance
between the UAV and the blade surface, with Γbla ∈ R>0 and
ε ∈ R>0 representing the minimum required distance and ma-
neuverability margin, respectively. The latter enables the UAV
to continue operating under challenging scenarios, such as col-
lision risks, while meeting mission specifications. The always
operators (□) are exploited to ensure the satisfaction of the min-
imum time requirements Tbla and Tins. Figure 2 illustrates the
scenario.

Utilizing the specifications outlined in (2), the optimization
problem, as defined in Section 3.6, is formulated to determine
feasible trajectories that maximize the smooth robustness ρ̃φ(x)
concerning the given mission specifications φ. To achieve this
objective, it is essential to compute the robustness score for
each predicate. The STL formula (2) consists of two types of
predicates. The first type assesses whether the UAVs’ position

7

0|1

1

4

0|2

32

w 01|1
w13|1

w 04
|1

w03|1

w12|1

w
02|1

w
41
|1

w42|1 w
34|1

w
32
|1

w13|2

w
01|2

w 03
|2

w
04
|2

w02|2

w12|2
w

41
|2

w
34|2w42|2

w 23
|2

Figure 3: Instance of the graph G assuming three target areas (round solid
nodes), one blade to cover (round dashed nodes), and two UAVs. Round double
nodes are the depots. Notably, we assume that wi j|d = w ji|d .

belongs or does not belong to a specific region, as illustrated
in (3a), (3b), (3c), (3e), (3f). The second type evaluates the
distance between UAVs, as indicated by the safety requirement
in (3d). The robustness values are determined based on the Eu-
clidean distance. For predicates belonging to the first group, a
positive robustness signifies that the UAV lies within the des-
ignated region. The robustness increases as the minimum Eu-
clidean distance to the boundaries of the region along the tra-
jectory grows larger. However, in the case of (3b), the opposite
holds true, where being within the obstacle region corresponds
to a negative robustness. In the safety distance predicate (3d),
the robustness is positive when the distance between UAVs ex-
ceeds the threshold Γdis. The robustness value increases as the
minimum Euclidean distance between UAVs along the trajec-
tory becomes larger.

4.2. MILP encoding
An appropriate initial guess is crucial for obtaining opti-

mal solutions for the STL motion planner within a reasonable
time frame and avoiding the solver from getting trapped in lo-
cal optima. To achieve this, the original wind turbine inspection
problem is abstracted to create a simpler optimization problem
with fewer constraints. The initial guess considers the mission
requirements related to covering the blade surface and visiting
all of the target areas (dφbla and dφtr). However, the constraints
related to obstacle avoidance, workspace, safety distance, and
mission completion requirements (dφobs, dφws, dφdis, and dφhm)
and mission time intervals (TN , Tins, and Tbla) are ignored to re-
duce complexity in the problem. To formulate the MILP plan-
ning problem, a graph-based representation is employed to con-
nect the target areas, blade extreme points (leading edge and
rotor shaft), and the vehicles’ initial positions. To guarantee
seamless coverage, the four blade extreme points (two on each
side) are considered as a single node in the graph. The MILP
assigns tasks to the vehicles and determines a navigation se-
quence for each UAV. This results in a type of VRP [38], which
assigns tasks to vehicles and provides a navigation sequence for
each UAV. Furthermore, we included the mission time in the
optimization to distribute it equally among fleet members.

A directed weighted multigraph represented by the tuple
G = (V,E,W,D) is used to formulate the MILP, as shown

in Figure 3. The set of vertices V is defined as T ∪ O, where
T correspond to the target areas and the blade extreme points,
and O = {o1, . . . , oδ} comprises the depots where each UAV is
located at t0. The cardinalities of the sets are denoted by |T | = τ
and |O| = δ. The graph’s edges and their weights are described
by the sets E andW, respectively. The set D, as said before,
contains δ available UAVs. The graph connectivity is such that
all vertices in T are fully connected to each other and to all
vertices in the set O, while the vertices in O are unconnected.
Specifically, for any {i, j} ∈ V and d ∈ D, the edge ei j|d ∈ E

connects vertices i and j using UAV d, while wi j|d ∈ W denotes
the corresponding weight. Notably, we assume that wi j|d = w ji|d

models the edge weights based on the UAVs’ time of flight
given their dynamic constraints, which are heterogeneous and
denoted by dv(j), da(j), d v̄(j) and dā(j).

The UAV motion primitives dS(j) (see Section 3.6) are em-
ployed to calculate the flight time for each UAV as it travels be-
tween target areas and blade extreme points, taking into account
the physical limitations of the vehicles in terms of velocity (dv(j)

and d v̄(j)) and acceleration (da(j) and dā(j)). For brevity, fur-
ther details for computing these times can be found elsewhere
in [45]. The objective of the mission is to minimize the overall
time.

To indicate the number of times an edge is selected in
the MILP solution, we assign an integer variable zi j|d, where
zi j|d ∈ N for i ∈ O and j ∈ T , with d ∈ D, to each edge
ei j|d ∈ E. We define an in-neighborhood, denoted by N in

i the
set of nodes having an edge entering i, that is N in

i = { j ∈ V :
(j, i) ∈ E}. Similarly, we define an out-neighborhood as the set
of nodes having an entering edge which starts from i, that is
Nout

i = { j ∈ V : (i, j) ∈ E}. Using these variables, we propose
to formulate the MILP planning problem as follows:

minimize
zi j|d

∑
{i, j}∈V, i, j, d∈D

wi j|d zi j|d (4a)

s.t.
∑
i∈N in

j

zi j|d =
∑

i∈Nout
j

z ji|d, ∀ j ∈ T , ∀d ∈ D, (4b)

∑
d∈D

∑
i∈N in

j

zi j|d ≥ 1, ∀ j ∈ T , (4c)

∑
j∈Nout

od

zod j|d = 1, ∀d ∈ D, (4d)

∑
j∈N in

od

z jod |d = 1, ∀d ∈ D. (4e)

In the above formulae, (4a) is the objective function encod-
ing the total flight time of the fleet of UAVs. Notice that (4a)
implicitly minimizes the fact that a drone passes by the same
edges multiple (useless) times. (4b) ensures that UAVs do not
accumulate in an area they reach. (4c) ensures that all target
areas and blade extreme points are visited at least once. (4d)
and (4e) enforce the depot of each drone as its departure and ar-
rival point. If disconnected subtours are provided in the MILP
solution, we adopt the suboptimal decision of connecting them
afterwards. Indeed, since the MILP solution is only used to seed
the final STL optimizer, this choice is not a significant concern

8

and allows to save computational time with respect to (w.r.t.)
enforcing subtours elimination constraints. Notice that (4) can
be adapted to meet the mission requirements, including addi-
tional futures, such as capacity restrictions for delivery mis-
sions, and removing tight limitations, such as the need to start
and end at the depot position. Additionally, heuristics and meta-
heuristics techniques [16, 46] can be used to cope with the in-
creasing number of constraints and variables.

After obtaining the optimal assignment from the MILP
planning problem (4), the motion primitives described in [30]
are used to generate dynamically feasible trajectories for
each UAV in accordance with its optimal navigation sequence
used to seed the STL optimizer.

4.3. Event-based replanner
Environmental uncertainties and disturbances can cause

mismatches between planned and actual drone trajectories (e.g.,
wind gusts or technical fault). In such cases, it is beneficial for
the planner to compute a new trajectory that minimizes devi-
ation from the optimal offline solution. To address this chal-
lenge, we present an improved event-based replanner [30] that
continuously adjusts the drone trajectory to make up for lost
time until the original time requirements are met. The revised
trajectories have less strict vehicle limitations (d v̂(j), dâ(j), d v̌(j),
and dǎ(j)) than the original plan (dv(j), da(j), d v̄(j), and dā(j)),
assuming that the original plan was scheduled with “conserva-
tive” constraints to avoid stresses on the actuators.

Let us introduce the revised velocity and acceleration con-
straints for each drone, characterized by their lower and up-
per limits, represented as d v̂(j), dâ(j), d v̌(j), and dǎ(j). Here,
d v̂(j) < dv(j), dâ(j) < da(j), d v̌(j) > d v̄(j), and dǎ(j) > dā(j). Let
us also define the discrete time instants when events occur as
t̄ = (t̄0, . . . , t̄E)⊤ ∈ RE+1 and t̄k as a generic entry of t̄. Finally,
let dp̃k and dp⋆k represent the runtime and optimal positions of
the d-th drone, respectively. Hence, we can define the event
trigger condition for the planner as ∥dp̃k −

dp⋆k ∥ > η, where
η ∈ R>0 is a threshold value set to achieve the best system be-
havior. Whenever this condition is met, a trigger is generated
and the planner computes a new plan online using the motion
planner in Sections 4.1 and 4.2 over the time interval [t̄k, t̂k].
Here, t̂k denotes the time instance associated with the next task
assignment before the trigger was generated. Note that only the
affected drone has its trajectory recomputed, while the other
functioning drones follow their original plans.

It is noteworthy that the computational effort needed for re-
planning is considerably less compared to initial planning, as
it deals with only one UAV and a reduced set of task regions
(those yet to be visited). While exploring alternative strate-
gies for replanning the routes of delayed drones may potentially
yield better solutions in terms of robustness scores, it is crucial
to highlight that our focus in this paper is on ensuring opera-
tional continuity, minimizing disruptions, and upholding safety
in hazardous scenarios.

4.4. Attrition-aware planner
In collaborative missions, conflicting tasks can lead to an

infeasible problem for the actual STL robustness score. For ex-

ample, a drone may be tasked with surveying areas that lack
sufficient safety margins for the entire mission duration. To
tackle this issue, incorporating user preferences into the planner
formulation can be beneficial. The goal is to generate a feasible
vehicle trajectory that prioritizes mission specifications, while
ensuring their temporal satisfaction. A generalized robust-
ness score approach for STL robust semantics [31, 43, 44] can
be employed to formally capture requirements using weights.
Rather than just focusing on boundary conditions, this allows
for the assignment of time priorities when the specification is
satisfied.

This addresses some limitations of the traditional robustness
score, such as the inability to specify when a proposition should
be preferentially satisfied, such as at the beginning or just before
the end of the optimization. As an example, we consider the
generalized robustness score for the logical operator and (∧)
(see Section 3.5):

ωρφ1∧φ2 (ω, x, tk) = min
(
ω1ρφ1 (x, tk), ω2ρφ2 (x, tk)

)
,

where ωρφ1∧φ2 (ω, x, tk) refers to the weighted version of the STL
robustness formula ρφ1∧φ2 (x, tk). The variable ω = (ω1, ω2)⊤,
with {ω1, ω2} ∈ R>0, represents the vector of weights applied to
each predicate of the STL formula φ = φ1 ∧ φ2.

Thus, we can express the weighted generalization of the
standard smooth robustness of the STL formula φ = φ1 ∧ φ2,
denoted by ωρ̃φ(ω, x, tk), as:

ωρ̃φ1∧φ2 (ω, x, tk) = min
i={1,2}

{((
1
2
− ω̄i

)
sign(ρ̃φi) +

1
2

)
ρ̃φi

}
,

where ω̄i = ωi/(I2ω) are normalized weights, with I2 ∈ R2×2

being the identity matrix. The complete syntax and seman-
tics of the generalized robustness score approach can be found
in [31, 43, 44]. Due to space limitations, full details of the ap-
proach are not reported here.

Hence, we propose to formulate problem (1) by replacing
the smooth approximation of the standard STL formula ρ̃φ(x, tk)
with its weighted version ωρ̃φ(ω, x, tk) as follows:

maximize
d p(j) ,d v(j) , d a(j)

d∈D

ωρ̃φ(ω,p, v)

s.t. dv(j) ≤ dv(j)
k ≤

d v̄(j),

da(j) ≤ da(j)
k ≤

dā(j),

ωρ̃φ(ω, dp(j), dv(j)) ≥ ζ,
dS(j),∀k = {0, 1, . . . ,N − 1}

. (5)

In this way, we can ensure the satisfaction of collaborative
missions while considering prioritized specifications to avoid
issues that may arise from conflicting tasks during trajectory
planning. For instance, if the original problem (1) is unable to
find a solution due to conflicting tasks, adjusting the weights
ω of the specifications, such as prioritizing safety (dφws, dφobs,
dφdis) and mission completion requirements (dφhm) over task
requirements (dφtr and dφbla), could lead to safer trajectories.
However, this comes at the expense of a reduction in the overall
robustness score ρφ(x, tk).

9

tk = 5 s tk = 7 s tk = 9 s tk = 10 s tk = 11 s tk = 12 s

Figure 4: Experiment snapshots. Solid, dashed, and dotted circles indicate “drone1”, “drone2”, and “drone3”, respectively. The wind turbine was virtually projected
within the UAVs’ camera frames to convey its proximity to the infrastructure.

5. Experimental Results

The proposed planning approach’s validity and effective-
ness were assessed through MATLAB and Gazebo simula-
tions, along with field experiments in a mock-up scenario.
Initially, numerical simulations were performed in MATLAB
without explicitly modeling actual vehicle dynamics and tra-
jectory tracking controllers. This approach allowed us to eval-
uate the planning algorithm’s performance and gain valuable
insights into its behavior. Subsequently, to further validate the
generated trajectories and leverage the benefits of software-in-
the-loop simulations [47, 48], we conducted additional simula-
tions using the Gazebo robotics simulator. Ultimately, field ex-
periments conducted in a mock-up scenario closely resembling
real-world conditions demonstrated the practical applicability
of the proposed method.

The experiments aimed to demonstrate several key aspects:
(i) the alignment of planned trajectories with mission require-
ments, (ii) the necessity for the STL motion planner to fulfill
mission specifications, and to show where the MILP alone is
insufficient, (iii) the ability to replan missions in response to
unexpected disturbances, (iv) a comparison of solutions with
and without the attrition-aware planner, and (v) the feasibility
of the method in real-world scenarios.

MATLAB was used to code the optimization method, with
the MILP formulated using the CVX framework1 and the STL
motion planner using the CasADi library2 and IPOPT3 as a
solver. The simulations were performed on a computer run-
ning Ubuntu 20.04 with an i7-8565U processor (1.80 GHz) and
32GB of RAM. Videos with the experiments and the numerical
simulations in MATLAB and Gazebo are available at http:
//mrs.felk.cvut.cz/milp-stl. Figure 4 shows ex-
periment snapshots with virtualized representations of the wind
turbine.

5.1. Wind turbine inspection
We evaluated our planning approach using the wind turbine

inspection scenario described in Section 2 and three drones.
The scenario included nine target areas for the pylon inspec-
tion task and a single blade for the blade inspection task, as
shown in Figure 5, in a mock-up area of 8 m × 20 m × 14 m.
We chose to focus our inspection efforts on a single blade, as
it provided sufficient scope to thoroughly test the effectiveness

1http://cvxr.com/cvx/
2https://web.casadi.org/
3https://coin-or.github.io/Ipopt/

and feasibility of our methodology. The optimization problem
was run with the parameter values listed in Table 2. To ensure
a reasonable computation time, short symbolic mission time in-
tervals (Tins, Tbla, and TN) were used. During the inspection
operation, the heading angles of the drones (dψ) were adjusted
and aligned with the displacement direction when moving to-
wards the target areas (pylon inspection) or the blade (blade in-
spection). Furthermore, during blade inspection (dφbla), drones
maintained their heading toward the blade surface between its
two extremes, the leading edge and rotor shaft. Additionally,
during pylon inspection (dφtr), the drone’s heading remained
constant at a specific value for the inspection duration (Tins),
chosen per each target based on the particular pylon area under
surveillance.

The planned trajectories, along with the wind turbine, tar-
get areas, and blade extreme points, are depicted in Figure 5.
The wind turbine is 12 m in height and 12 m in width, with a
blade surface extension of 7 m starting from the rotor shaft to
the leading edge. The small size of the wind turbine served
two main purposes in our experiments. Firstly, it ensured that
our experiments remained self-contained, conducted within a
mock-up scenario to demonstrate the validity and effectiveness
of our proposed planning approach. Secondly, it is worth not-
ing that the experiments were conducted in an area where drone
flight over 20 m in height was not permitted. The optimiza-
tion problem required 145 s to solve and 4 s to find an initial
guess solution. Real-world experiments confirm the alignment
of planned trajectories with mission requirements, as evidenced
by the results in Figure 12. The results indicate that the dis-
tance between vehicles remains above the specified threshold
value Γdis at all times, and the velocity and acceleration of
each vehicle remains within the allowed bounds of [dv(j), d v̄(j)]
and [da(j), dā(j)], respectively. Additionally, throughout the
blade inspection, the vehicle always maintain a certain distance
(Γ3|bla ∈ (Γbla−ε,Γbla+ε)). Note that, for simplicity, we assume
symmetric velocity and acceleration bounds for each drone, i.e.,
|dv(j)| = |d v̄(j)| and |da(j)| = |dā(j)|.

5.2. Comparative analysis with the initial guess solution

In this section, we assess the hierarchical planner’s effec-
tiveness in solving the collaborative inspection problem. No-
tably, the STL optimization problem (1) is nonlinear and non-
convex, requiring an initial guess for convergence to a feasi-
ble solution. As a result, we compare the MILP solution (4)
with the solution obtained from the STL optimization, seeded
with the MILP solution since we cannot compare them directly.
The solver was indeed not able to converge for the pure STL

10

http://mrs.felk.cvut.cz/milp-stl
http://mrs.felk.cvut.cz/milp-stl
http://cvxr.com/cvx/
https://web.casadi.org/
https://coin-or.github.io/Ipopt/

Figure 5: Wind turbine inspection scenario along with planner trajectories. Ar-
rows depict the path followed by the drones throughout the mission.

Description Sym. Value Description Sym. Value
Sampling period Ts 0.05 [s] Tunable parameter λ 10 [−]
Safety distance Γdis 1 [m] Blade distance Γbla 2.5 [m]
Max velocity ∥d v̄(j)∥ {1, 0.7, 1}[m/s] Max accel. ∥dā(j)∥ {1, 0.7, 1}[m/s2]
Trigger. cond η 1 [m] Blade margin ε 1 [m]

Rev. max velocity ∥d v̂(j)∥ 2 [m/s] Rev. max accel. ∥dǎ(j)∥ 5 [m/s2]
Weight φtr ωφtr 1 [−] Weight φbla ωφbla 1 [−]
Weight φws ωφws 2 [−] Weight φhm ωφhm 1 [−]
Weight φobs ωφobs 4 [−] Pylon insp. Tins 1 [s]
Weight φdis ωφdis 3 [−] Mission time TN 13 [s]

STL safety margin ζ 0.2 [−] Blade insp. Tbla 1.5 [s]

Table 2: Optimization problem parameter values.

problem with generic initial condition, so highlighting the im-
portance of having an MILP problem solution for warm start-
ing the STL solution computation. We evaluate compliance
with the mission requirements and how the hierarchical planner
addresses nonlinear complexities such as obstacle avoidance,
safety distance, and time requirements, which the MILP alone
cannot handle. Figure 6 depicts the trajectories generated using
motion primitives [30] and the waypoint sequences assigned by
the MILP to each UAV.

Upon closer inspection, it is somewhat evident that
the MILP formulation neglects vehicle accelerations a(j), which
are used for controlling the vehicles’ motion. This may yield
impractical trajectories or contain sharp turns and corners, po-
tentially deviating from mission requirements, posing safety
hazards, and resulting in high energy consumption. Further-
more, the MILP formulation also fails to consider the distance
constraints (dφdis and dφbla) due to the computational burden of
accounting for vehicle dynamics. Thus, changing the Γdis (3d)
and Γbla (3f) values may require a completely different set of
optimal sequences (output of the MILP solver) for the final so-
lution of the problem. Additionally, the MILP formulation does
not address obstacle avoidance, which can be observed in Fig-
ure 6 with the trajectory crossing the wind turbine. In contrast,
Figure 5 shows how the STL formulation fine-tunes the initial
guess solution to meet the mutual safety distance constraint and
other mission requirements.

Finally, the differences between the STL and MILP solu-
tions not only affect the shape of trajectories, but also the se-
quence of targets to visit. To illustrate this point, Figure 7
presents a simple scenario involving two UAVs tasked with vis-
iting a set of target areas within a specified time interval. Here,

Figure 6: Trajectories obtained solely through the MILP formulation, without
using the STL planner.

(a)

(b)

Figure 7: Simple scenario showing the independence of the final STL solu-
tion (7b) from the MILP initial guess (7a).

the MILP initial guess (Figure 7a) assigns the workload be-
tween the UAVs minimizing the total flight time, but ignores
the vehicle dynamic and time constraints. Conversely, the STL
planner (Figure 7b) reassigns targets to meet all mission speci-
fications, showing the flexibility of the hierarchical planner.

5.3. Attrition-aware and event-triggered replanner

This section evaluates the performance of the attrition-
aware and event-triggered replanner. The results of numeri-
cal simulations in MATLAB are depicted in Figures 8 and 10.
User preferences were incorporated into the STL robust seman-
tics to demonstrate the importance of safety requirements (dφdis
and dφobs) in the optimization problem, while also satisfying
the same mission criteria. The trajectories obtained with user
preferences resulted in safer paths, as shown in Figure 8. A
generalized robustness score approach was used for the STL
robust semantics, which affected the robustness of the safety
requirements, as depicted in Figure 9. The weights used for the
numerical simulations are reported in Table 2. The MILP plan-
ning problem (4) took 4 s to solve, while the STL optimization
problem (5) took 107 s to solve.

To validate the event-triggered replanner’s performance, we
conducted simulations in the presence of unexpected distur-
bances that deviated the UAV from its planned path. The re-
planner was able to detect major deviations (i.e., ∥dp̃k −

dp⋆k ∥ >
η) and trigger a partial replanning process online, bringing

11

Figure 8: Wind turbine inspection scenario considering the attrition-aware mo-
tion planner.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time [s]

R
ob

us
tn

es
s

Sc
or

e

ρφobs ρφdis

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time [s]

R
ob

us
tn

es
s

Sc
or

e

ρφobs ρφdis

Figure 9: Robustness score profiles for φobs and φdis specifications. From left to
right: data when considering the “basic” (1) and the attrition-aware (5) motion
planner, respectively.

the UAV back to the next target area, as shown in Figure 10.
The planner then checked whether mission requirements were
fulfilled and continued replanning until the lost time was re-
covered. The optimization process took less than 1 s for each
replanning.

5.4. Field experiments

Experiments were performed with MRS F450 quadro-
tors [49, 50] in a mock-up scenario with three UAVs and a
wind turbine (shown in Figure 5). Each UAV was equipped
with an Intel NUC computer featuring an i7-8559U proces-
sor with 16GB of RAM, along with the Pixhawk flight con-
troller. The software stack utilized the Noetic Ninjemys release

Figure 10: Event-triggered replanner. Black and red paths represent the de-
viation from the original path and the updated trajectory from the replanner,
respectively.

Motion
Planner

φ

Ground Station

Tracking
Controller

UAV
Plant

1st quadrotor
1ωc

1Tc

1x⋆,1u⋆

1ψ

Tracking
Controller

UAV
Plant

2nd quadrotor
2ωc

2Tc

2x⋆,2u⋆

2ψ
. . .

Tracking
Controller

UAV
Plant

δth quadrotor
δωc

δTc

δx⋆,δu⋆

δψ

Figure 11: System Architecture. The ground station’s STL Motion Planner
is responsible for generating trajectories (1x, 1u, . . . , δx, δu) and heading an-
gles (1ψ, . . . , δψ) for the multi-rotor UAVs. These trajectories and heading an-
gles serve as inputs to the Tracking Controller, which in turn calculates thrust
(1Tc, . . . ,

δTc) and angular velocities (1ωc, . . . ,
δωc) for the UAV Plant [47].

of ROS running on Ubuntu 20.04. For further details, refer
to [49, 50]. The wind turbine was simulated due to safety con-
cerns. The UAVs followed trajectories generated in MATLAB
and validated in Gazebo, accounting for the presence of the
wind turbine. Videos of simulated and experimental results are
available at http://mrs.felk.cvut.cz/milp-stl.

The system architecture, as illustrated in Figure 11, inte-
grates the STL motion planner responsible for solving the op-
timization problem (1) to generate trajectories (dx⋆, du⋆) and
heading angles (dψ) for the fleet. This trajectory generation
process occurs as a one-shot computation at time t0, with the
resulting trajectories serving as references for the UAV trajec-
tory tracking controller [47].

During the flight tests, we confirmed the successful com-
pletion of the inspection mission specified by the STL for-
mula (2). These flights also demonstrated adherence to phys-
ical constraints and safety features, including velocity (dv and
d v̄) and acceleration (da and dā) constraints, minimum safety
distance (Γdis), and blade distance (Γbla) detailed in Table 2.
Figure 4 provides snapshots from the experiments, illustrating
the UAVs’ proximity to wind turbine infrastructure such as py-
lons and blades. To visualize this, we utilized a ROS package
to project 3D mesh files – originally utilized in MATLAB and
Gazebo simulations – onto the camera frames of the UAVs.

5.5. Discussion
In this discussion section, we aim to compare our earlier

work in [30] with the current study, highlighting significant im-
provements and advantages.

Firstly, the current solution yields feasible trajectories with
diverse time bounds and vehicle constraints, while the approach
proposed in [30] assumes quadrotors have the same physi-
cal constraints in terms of maximum velocity and acceleration
({|dv(j)| = |d v̄(j)|, |da(j)| = |dā(j)|,∀d ∈ D}). Furthermore, and
more importantly, the inspection mission in [30] is limited to
visiting target areas of interest (for taking photos of power line
insulators and tower mechanical structures), similar to the py-
lon inspection specification. However, in the pylon inspection,
target areas are assigned to the drones by the MILP (4), so

12

http://mrs.felk.cvut.cz/milp-stl

0 2 4 6 8 10 12

10

0

−10

−20

−30

[m
] 1 p(1) 1 p(2) 1 p(3)

0 2 4 6 8 10 12

10

0

−10

−20

−30

[m
]

2 p(1) 2 p(2) 2 p(3)

0 1 2 3 4 5 6 7 8 9

10

0

−10

−20

−30

[m
]

3 p(1) 3 p(2) 3 p(3)

0 2 4 6 8 10 12

1.4

0.7

0

−0.7

−1.4

1v(j)

1v̄(j)

[m
s−1

]

1v(1) 1v(2) 1v(3)

0 2 4 6 8 10 12

1.4

0.7

0

−0.7

−1.4

2v(j)

2v̄(j)

[m
s−1

]

2v(1) 2v(2) 2v(3)

0 1 2 3 4 5 6 7 8 9

1.4

0.7

0

−0.7

−1.4

3v(j)

3v̄(j)

[m
s−1

]

3v(1) 3v(2) 3v(3)

0 2 4 6 8 10 12

1.4

0.7

0

−0.7

−1.4

φtr3 φtr9 φtr7 φtr6 φhm1

1a(j)

1ā(j)

[m
s−2

]

1a(1) 1a(2) 1a(3)

0 2 4 6 8 10 12

1.4

0.7

0

−0.7

−1.4

φtr1 φtr5 φtr8 φtr4 φtr2 φhm2

2a(j)

2ā(j)

[m
s−2

]

2a(1) 2a(2) 2a(3)

0 1 2 3 4 5 6 7 8 9

1.4

0.7

0

−0.7

−1.4

φbla1−2 φbla3−4 φhm3

3a(j)

3ā(j)

[m
s−2

]

3a(1) 3a(2) 3a(3)

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Γ

Time [s]

[m
]

Γ1|2 Γ3|1 Γ3|2

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time [s]

R
ob

us
tn

es
s

Sc
or

e

1ρ(x) 2ρ(x) 3ρ(x)

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Γbla + ε

Γbla − ε

Time [s]

[m
]

Γ3|bla

Figure 12: Position, velocity, acceleration, mutual safety distance (Γn|m), and
distance from the blade Γ3|bla surface. Blue-colored time windows indicate the
pylon and blade inspection operations.

one drone could theoretically cover all targets while the second
could remain on the ground. In the algorithm proposed in [30],
the targets are manually assigned to the drones. Finally, the op-
timization problem in (1) sets a minimum robustness threshold
value (ρ̃φ(dp(j), dv(j)) ≥ ζ) that acts as a safety buffer, ensuring
the satisfaction of the STL formula φ even in the presence of
disturbances, which is not included in the previous work.

Secondly, the collaborative mission requirements, along
with the heterogeneous constraints, make the problem challeng-
ing to solve. The closer the initial guess is to the optimal so-
lution, the higher the chances that the nonlinear optimization
problem will be feasible and converge to the optimal solution.
This is the second contribution of the paper, i.e., proposing a
two-step hierarchical solution for computing the initial solution.

Lastly, as discussed in the comparative analysis between
the MILP and the STL solution seeded with the MILP ini-
tial guess in Section 5.2, the pure STL approach (as struc-
tured in the authors’ previous work [30]) does not converge
with a generic initial condition. This underscores the impor-
tance of having an MILP problem to warm-start the STL solu-
tion computation. This is another significant contribution of the
manuscript.

6. Conclusions

This paper has presented a motion planning framework
for collaborative inspection missions using a fleet of multi-
rotor UAVs under heterogeneous constraints, with a focus on
wind turbine inspection. The approach uses STL specifications
to generate feasible trajectories meeting mission requirements,
including safety and mission time requirements. An MILP ap-
proach provides a feasible initial guess solution for the STL
planner, which helps solution convergence. An event-triggered
replanning and attrition-aware planning handle failure and con-
flicting tasks. Validation has been performed through MAT-
LAB and Gazebo simulations and field experiments.

Our investigation has revealed that depending solely on the
simplified MILP solver falls short for our application. Nonethe-
less, it does serve as a valuable foundation for the complete
STL planner. Embracing a hierarchical approach empowers us
to handle a broader range of mission specifications and require-
ments compared to existing methods, albeit with a rise in com-
putational complexity. In future work, we plan to investigate
risk-aware techniques to model sensor failure and communica-
tion dropouts in the planning problem. Additionally, delving
into conflicting temporal logic specifications and other tempo-
ral logic languages will expand the framework’s utility to dy-
namically changing environments.

Acknowledgments

The authors would like to thank Daniel Smrcka, Jan Bed-
nar, Jiri Horyna, Tomas Baca, and the MRS group in Prague
for their help with the field experiments. This publication
is part of the R+D+i project TED2021-131716B-C22, funded
by MCIN/AEI/10.13039/501100011033 and by the European
Union NextGenerationEU/PRTR. This work was also partially
supported by the European Union’s Horizon 2020 research and
innovation project AERIAL-CORE under grant agreement no.
871479, by the ECSEL Joint Undertaking (JU) research and in-
novation programme COMP4DRONES under grant agreement
no. 826610, by the Czech Science Foundation (GAČR) grant
no. 23-07517S, by CTU grant no. SGS23/177/OHK3/3T/13,
and by the European Union under the project Robotics and
Advanced Industrial Production (reg. no. CZ.02.01.01/00/22
008/0004590).

References

[1] A. Ollero, A. Suarez, J. M. Marredo, G. Cioffi, R. Piniecka, G. Vasilje-
vic, V. D. Hoang, M. Marolla, J. Xing, M. Saska, S. Bogdan, E. Ebeid,
F. Ruggiero, J. R. Martı́nez-de Dios, D. Scaramuzza, V. Lippiello, A. Vig-
uria, Application of Intelligent Aerial Robots to the Inspection and Main-
tenance of Electrical Power Lines, in: K. Loupos (Ed.), Robotics and
Automation Solutions for Inspection and Maintenance in Critical In-
frastructures, now publishers inc., 2024, Ch. 8, pp. 178–201. doi:
10.1561/9781638282839.ch8.

[2] A. Ollero, G. Heredia, A. Franchi, G. Antonelli, K. Kondak, A. Sanfeliu,
A. Viguria, J. R. Martinez-de Dios, F. Pierri, J. Cortes, A. Santamaria-
Navarro, M. A. Trujillo Soto, R. Balachandran, J. Andrade-Cetto, A. Ro-
driguez, The AEROARMS Project: Aerial Robots with Advanced Ma-
nipulation Capabilities for Inspection and Maintenance, IEEE Robotics

13

https://doi.org/10.1561/9781638282839.ch8
https://doi.org/10.1561/9781638282839.ch8

& Automation Magazine 25 (4) (2018) 12–23. doi:10.1109/MRA.
2018.2852789.

[3] M. Car, L. Markovic, A. Ivanovic, M. Orsag, S. Bogdan, Autonomous
Wind-Turbine Blade Inspection Using LiDAR-Equipped Unmanned
Aerial Vehicle, IEEE Access 8 (2020) 131380–131387. doi:10.
1109/ACCESS.2020.3009738.

[4] A. Caballero, G. Silano, A Signal Temporal Logic Motion Planner for
Bird Diverter Installation Tasks With Multi-Robot Aerial Systems, IEEE
Access 11 (2023) 81361–81377. doi:10.1109/ACCESS.2023.
3300240.

[5] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, M. Guizani, Unmanned Aerial
Vehicles (UAVs): A Survey on Civil Applications and Key Research
Challenges, IEEE Access 7 (2019) 48572–48634. doi:10.1109/
ACCESS.2019.2909530.

[6] A. Madridan, A. Al-Kaff, D. Martı́n, A. de la Escalera, Trajectory plan-
ning for multi-robot systems: Methods and applications, Expert Systems
with Applications 173 (2021) 1–14. doi:10.1016/j.eswa.2021.
114660.

[7] R. Merkert, J. Bushell, Managing the drone revolution: A systematic liter-
ature review into the current use of airborne drones and future strategic di-
rections for their effective control, Journal of Air Transport Management
89 (2020) 1–10. doi:10.1016/j.jairtraman.2020.101929.

[8] G. Silano, A. Afifi, M. Saska, A. Franchi, A Signal Temporal Logic
Planner for Ergonomic Human–Robot Collaboration, in: International
Conference on Unmanned Aircraft Systems, 2023, pp. 328–335. doi:
10.1109/ICUAS57906.2023.10156559.

[9] C. Kanellakis, E. Fresk, S. S. Mansouri, D. Kominiak, G. Nikolakopou-
los, Towards Visual Inspection of Wind Turbines: A Case of Visual Data
Acquisition Using Autonomous Aerial Robots, IEEE Access 8 (2020)
181650–181661. doi:10.1109/ACCESS.2020.3028195.

[10] H.-A. Langaker, C. L. S. Hkon Kjerkreit, R. J. Moore, Øystein H Hol-
hjem, I. Jensen, A. Morrison, A. A. Transeth, O. Kvien, G. Berg,
T. A. Olsen, A. Hatlestad, T. Negrd, R. Broch, J. E. Johnsen, An au-
tonomous drone-based system for inspection of electrical substations, In-
ternational Journal of Advanced Robotic Systems 18 (2) (2021) 1–15.
doi:10.1177/17298814211002973.

[11] D. Bonilla Licea, G. Silano, H. El Hammouti, M. Ghogho, M. Saska,
Reshaping UAV-Enabled Communications with Omnidirectional Multi-
Rotor Aerial Vehicles, IEEE Communications Magazine To Appear
(2025). doi:10.1109/MCOM.001.2400421.

[12] G. Pola, M. D. Di Benedetto, Control of Cyber-Physical-Systems with
logic specifications: A formal methods approach, Ann. Rev. in Contr. 47
(2019) 178–192. doi:10.1016/j.arcontrol.2019.03.010.

[13] O. Maler, D. Nickovic, Monitoring Temporal Properties of Continu-
ous Signals, in: FTMTFTS, 2004, pp. 152–166. doi:10.1007/
978-3-540-30206-3_12.

[14] A. Donzé, O. Maler, Robust Satisfaction of Temporal Logic over Real-
Valued Signals, in: FORMATS, 2010, pp. 92–106. doi:10.1007/
978-3-642-15297-9_9.

[15] S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, G. Nikolakopou-
los, Cooperative coverage path planning for visual inspection, Con-
trol Engineering Practice 74 (2018) 118–131. doi:10.1016/j.
conengprac.2018.03.002.

[16] C. S. Tan, R. Mohd-Mokhtar, M. R. Arshad, A Comprehensive Review
of Coverage Path Planning in Robotics Using Classical and Heuristic
Algorithms, IEEE Access 9 (2021) 119310–119342. doi:10.1109/
ACCESS.2021.3108177.

[17] F. Nekovář, J. Faigl, M. Saska, Multi-Tour Set Traveling Salesman Prob-
lem in Planning Power Transmission Line Inspection, IEEE Robotics and
Automation Letters 6 (4) (2021) 6196–6203. doi:10.1109/LRA.
2021.3091695.

[18] J. Park, J. Kim, I. Jang, H. J. Kim, Efficient Multi-Agent Trajectory Plan-
ning with Feasibility Guarantee using Relative Bernstein Polynomial, in:
IEEE International Conference on Robotics and Automation, 2020, pp.
434–440. doi:10.1109/ICRA40945.2020.9197162.

[19] N. D. Tehrani, A. Krzywosz, I. Cherepinsky, S. Carlson, Multi-Objective
Task Allocation for Multi-Agent Systems using Hierarchical Cost Func-
tion, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2022, pp. 12045–12050. doi:10.1109/IROS47612.
2022.9981071.

[20] H. Zhu, J. Alonso-Mora, Chance-Constrained Collision Avoidance for
MAVs in Dynamic Environments, IEEE Robotics and Automation Letters
4 (2) (2019) 776–783. doi:10.1109/LRA.2019.2893494.

[21] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, N. Ayanian, Tra-
jectory Planning for Quadrotor Swarms, IEEE Transactions on Robotics
34 (4) (2018) 856–869. doi:10.1109/TRO.2018.2853613.

[22] Y. V. Pant, H. Abbas, R. Mangharam, Smooth operator: Control using
the smooth robustness of temporal logic, in: IEEE Conference on Control
Technology and Applications, 2017, pp. 1235–1240. doi:10.1109/
CCTA.2017.8062628.

[23] C. E. Luis, M. Vukosavljev, A. P. Schoellig, Online Trajectory Genera-
tion With Distributed Model Predictive Control for Multi-Robot Motion
Planning, IEEE Robotics and Automation Letters 5 (2) (2020) 604–611.
doi:10.1109/LRA.2020.2964159.

[24] S. I. Krich, M. Montanari, V. Amendolare, P. Berestesky, Wind Turbine
Interference Mitigation Using a Waveform Diversity Radar, IEEE Trans-
actions on Aerospace and Electronic Systems 53 (2) (2017) 805–815.
doi:10.1109/TAES.2017.2665143.

[25] L. Lindemann, D. V. Dimarogonas, Barrier Function Based Collaborative
Control of Multiple Robots Under Signal Temporal Logic Tasks, IEEE
Transactions on Control of Network Systems 7 (4) (2020) 1916–1928.
doi:10.1109/TCNS.2020.3014602.

[26] Y. Chen, X. C. Ding, A. Stefanescu, C. Belta, Formal Approach to the De-
ployment of Distributed Robotic Teams, IEEE Transactions on Robotics
28 (1) (2012) 158–171. doi:10.1109/TRO.2011.2163434.

[27] K. Leahy, Z. Serlin, C.-I. Vasile, A. Schoer, A. M. Jones, R. Tron,
C. Belta, Scalable and Robust Algorithms for Task-Based Coordina-
tion From High-Level Specifications (ScRATCHeS), IEEE Transactions
on Robotics 38 (4) (2022) 2516–2535. doi:10.1109/TRO.2021.
3130794.

[28] A. T. Buyukkocak, D. Aksaray, Y. Yazıcıoğlu, Control Barrier Func-
tions with Actuation Constraints under Signal Temporal Logic Specifi-
cations, in: European Control Conference, 2022, pp. 162–168. doi:
10.23919/ECC55457.2022.9838028.

[29] D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena
Scientific, 2012, fourth Edition.

[30] G. Silano, T. Baca, R. Penicka, D. Liuzza, M. Saska, Power Line Inspec-
tion Tasks With Multi-Aerial Robot Systems Via Signal Temporal Logic
Specifications, IEEE Robotics and Automation Letters 6 (2) (2021) 4169–
4176. doi:10.1109/LRA.2021.3068114.

[31] N. Mehdipour, C.-I. Vasile, C. Belta, Specifying User Preferences Using
Weighted Signal Temporal Logic, IEEE Control Systems Letters 5 (6)
(2021) 2006–2011. doi:10.1109/LCSYS.2020.3047362.

[32] C. A. Dimmig, G. Silano, K. McGuire, C. Gabellieri, W. Hönig, J. Moore,
M. Kobilarov, Survey of Simulators for Aerial Robots: An Overview and
In-Depth Systematic Comparisons, IEEE Robotics & Automation Maga-
zine (2024) 2–15 In Press. doi:10.1109/MRA.2024.3433171.

[33] E. Plaku, S. Karaman, Motion planning with temporal-logic specifica-
tions: Progress and challenges, AI Communications 29 (1) (2016) 151–
162. doi:10.3233/AIC-150682.

[34] D. Sun, J. Chen, S. Mitra, C. Fan, Multi-Agent Motion Planning From
Signal Temporal Logic Specifications, IEEE Robotics and Automa-
tion Letters 7 (2) (2022) 3451–3458. doi:10.1109/LRA.2022.
3146951.

[35] G. Yang, C. Belta, R. Tron, Continuous-time Signal Temporal Logic
Planning with Control Barrier Functions, in: American Control Con-
ference, 2020, pp. 4612–4618. doi:10.23919/ACC45564.2020.
9147387.

[36] Y. V. Pant, H. Abbas, R. A. Quaye, R. Mangharam, Fly-by-logic: Control
of multi-drone fleets with temporal logic objectives, in: ACM/IEEE 9th
International Conference on Cyber-Physical Systems, 2018, pp. 186–197.
doi:10.1109/ICCPS.2018.00026.

[37] C.-I. Vasile, V. Raman, S. Karaman, Sampling-based synthesis of
maximally-satisfying controllers for temporal logic specifications, in:
IEEE International Conference on Intelligent Robots and Systems, 2017,
pp. 3840–3847. doi:10.1109/IROS.2017.8206235.

[38] S. M. LaValle, Sampling-Based Motion Planning, Cambridge University
Press, 2006.

[39] C. Belta, S. Sadraddini, Formal Methods for Control Synthesis:
An Optimization Perspective, Annual Review of Control, Robotics,
and Autonomous Systems 2 (2) (2019) 115–140. doi:10.1146/

14

https://doi.org/10.1109/MRA.2018.2852789
https://doi.org/10.1109/MRA.2018.2852789
https://doi.org/10.1109/ACCESS.2020.3009738
https://doi.org/10.1109/ACCESS.2020.3009738
https://doi.org/10.1109/ACCESS.2023.3300240
https://doi.org/10.1109/ACCESS.2023.3300240
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1016/j.eswa.2021.114660
https://doi.org/10.1016/j.eswa.2021.114660
https://doi.org/10.1016/j.jairtraman.2020.101929
https://doi.org/10.1109/ICUAS57906.2023.10156559
https://doi.org/10.1109/ICUAS57906.2023.10156559
https://doi.org/10.1109/ACCESS.2020.3028195
https://doi.org/10.1177/17298814211002973
https://doi.org/10.1109/MCOM.001.2400421
https://doi.org/10.1016/j.arcontrol.2019.03.010
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.conengprac.2018.03.002
https://doi.org/10.1016/j.conengprac.2018.03.002
https://doi.org/10.1109/ACCESS.2021.3108177
https://doi.org/10.1109/ACCESS.2021.3108177
https://doi.org/10.1109/LRA.2021.3091695
https://doi.org/10.1109/LRA.2021.3091695
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1109/IROS47612.2022.9981071
https://doi.org/10.1109/IROS47612.2022.9981071
https://doi.org/10.1109/LRA.2019.2893494
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/CCTA.2017.8062628
https://doi.org/10.1109/CCTA.2017.8062628
https://doi.org/10.1109/LRA.2020.2964159
https://doi.org/10.1109/TAES.2017.2665143
https://doi.org/10.1109/TCNS.2020.3014602
https://doi.org/10.1109/TRO.2011.2163434
https://doi.org/10.1109/TRO.2021.3130794
https://doi.org/10.1109/TRO.2021.3130794
https://doi.org/10.23919/ECC55457.2022.9838028
https://doi.org/10.23919/ECC55457.2022.9838028
https://doi.org/10.1109/LRA.2021.3068114
https://doi.org/10.1109/LCSYS.2020.3047362
https://doi.org/10.1109/MRA.2024.3433171
https://doi.org/10.3233/AIC-150682
https://doi.org/10.1109/LRA.2022.3146951
https://doi.org/10.1109/LRA.2022.3146951
https://doi.org/10.23919/ACC45564.2020.9147387
https://doi.org/10.23919/ACC45564.2020.9147387
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/10.1109/IROS.2017.8206235
https://doi.org/10.1146/annurev-control-053018-023717

annurev-control-053018-023717.
[40] C. Belta, B. Yordanov, E. A. Gol, Formal Methods for Discrete-Time

Dynamical Systems, Vol. 89, Springer, 2017.
[41] G. E. Fainekos, G. J. Pappas, Robustness of temporal logic specifica-

tions for continuous-time signals, Theoretical Computer Science 410 (42)
(2009) 4262–4291. doi:10.1016/j.tcs.2009.06.021.

[42] Y. Gilpin, V. Kurtz, H. Lin, A Smooth Robustness Measure of Signal
Temporal Logic for Symbolic Control, IEEE Control Systems Letters
5 (1) (2021) 241–246. doi:10.1109/LCSYS.2020.3001875.

[43] G. A. Cardona, D. Kamale, C.-I. Vasile, Mixed Integer Linear Program-
ming Approach for Control Synthesis with Weighted Signal Temporal
Logic, in: 26th ACM International Conference on Hybrid Systems: Com-
putation and Control, 2023, pp. 1–12. doi:10.1145/3575870.
3587120.

[44] G. A. Cardona, C.-I. Vasile, Preferences on Partial Satisfaction using
Weighted Signal Temporal Logic Specifications, in: European Con-
trol Conference, 2023, pp. 1–6. doi:10.23919/ECC57647.2023.
10178201.

[45] M. W. Mueller, M. Hehn, R. D’Andrea, A Computationally Efficient
Motion Primitive for Quadrocopter Trajectory Generation, IEEE Trans-
actions on Robotics 31 (6) (2015) 1294–1310. doi:10.1109/TRO.
2015.2479878.

[46] F. Hillier, G. J. Lieberman, Introduction to Operations Research: Eight
edition, McGraw-Hill Education, 2004.

[47] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, M. Saska,
The MRS UAV System: Pushing the Frontiers of Reproducible Research,
Real-world Deployment, and Education with Autonomous Unmanned
Aerial Vehicles, Journal of Intelligent & Robotic Systems 102 (26) (2021)
1–28. doi:10.1007/s10846-021-01383-5.

[48] G. Silano, P. Oppido, L. Iannelli, Software-in-the-loop simulation for im-
proving flight control system design: a quadrotor case study, in: IEEE
International Conference on Systems, Man and Cybernetics, 2019, pp.
466–471. doi:10.1109/SMC.2019.8914154.

[49] D. Hert, T. Baca, P. Petracek, V. Kratky, V. Spurny, M. Petrilik, V. Ma-
tous, D. Zaitlik, P. Stoudek, V. Walter, P. Stepan, J. Horyna, V. Ptrizl,
G. Silano, D. Bonilla Licea, P. Stibinger, R. Penicka, T. Nascimento,
M. Saska, MRS Modular UAV Hardware Platforms for Supporting Re-
search in Real-World Outdoor and Indoor Environments, in: Interna-
tional Conference on Unmanned Aircraft Systems, 2022, pp. 1264–1273.
doi:10.1109/ICUAS54217.2022.9836083.

[50] D. Hert, T. Baca, P. Petracek, V. Kratky, R. Penicka, V. Spurny, M. Petri-
lik, V. Matous, D. Zaitlik, P. Stoudek, V. Walter, P. Stepan, J. Ho-
ryna, V. Ptrizl, M. Sramek, A. Ahmad, G. Silano, D. Bonilla Licea,
P. Stibinger, T. Nascimento, M. Saska, MRS Drone: A Modular Plat-
form for Real-World Deployment of Aerial Multi-Robot Systems, Jour-
nal of Intelligent & Robotic Systems 108 (64) (2023) 1–34. doi:
10.1007/s10846-023-01879-2.

Giuseppe Silano (Member, IEEE) is
a tenured researcher at Ricerca sul Sis-
tema Energetico and an associated re-
searcher at Czech Technical University
in Prague (CTU-P). He earned his B.Sc.,
M.Sc., and Ph.D. from the University of
Sannio, Italy, in 2012, 2016, and 2020,
respectively. During his Ph.D., he vis-
ited LAAS-CNRS and participated in the
MBZIRC 2020 robotic competition. He
was a post-doctoral researcher at CTU-

P with the MRS group (2020-2022) and a visiting researcher
at the RAM group, University of Twente, in 2022. His research
focuses on UAV motion planning, model predictive control, for-
mal methods for robotics, communication-aware robotics, and
human-robot collaboration. He has authored over 30 publica-
tions and held leadership roles in European research projects.
Since 2022, he serves as an associate editor for key conferences.

Alvaro Caballero earned his B.Sc.
in aerospace engineering, M.Sc. in aero-
nautical engineering, and Ph.D. in aerial
robotics from the University of Seville,
Spain, in 2014, 2016, and 2022, re-
spectively. Currently, he holds a post-
doctoral position at the GRVC Robotics
Lab, University of Seville. Since 2014,
he has contributed to various projects,

including FP7 EC-SAFEMOBIL, MBZIRC 2017, and H2020
AEROARMS, HYFLIERS, AERIAL-CORE, and OMICRON.
He also collaborates with industry leaders like NAVANTIA or
ENEL. His main research interests focus on motion planning
for aerial manipulation in inspection and maintenance opera-
tions.

Davide Liuzza obtained his Ph.D.
in automation engineering from the Uni-
versity of Naples Federico II, Italy, in
2013. He conducted research visits to
institutions in the UK and Sweden dur-
ing his doctoral studies. Afterward, he
held postdoctoral positions at KTH and
the University of Sannio. Subsequently,
he was a visiting researcher at Chalmers
University of Technology and a staff re-

searcher at ENEA. Currently, he serves as an Assistant Profes-
sor at the University of Sannio. His research focuses on net-
worked control systems, multiagent system coordination, non-
linear systems’ stability, and energy system control. He also ex-
plores topics like human-robot coordination and real-time con-
trol of nuclear fusion systems.

Luigi Iannelli (Senior Member,
IEEE) earned his M.Sc. in computer en-
gineering from the University of Sannio,
Italy, in 1999, and his Ph.D. in informa-
tion engineering from the University of
Napoli Federico II, Italy, in 2003. He
became an associate professor of auto-
matic control at the University of San-
nio in 2016 after serving as an assistant
professor. With research visits to institu-

tions in Sweden and the Netherlands, his work centers on ana-
lyzing and controlling switched systems, stability of piecewise-
linear systems, smart grid control, and applying control theory
to power electronics and UAVs. He co-edited “Dynamics and
Control of Switched Electronic Systems” (Springer, 2012).

Stjepan Bogdan (Senior Member,
IEEE) earned his B.Sc., M.Sc., and Ph.D
from the University of Zagreb, Croatia,
in 1990, 1993, and 1999, respectively.
He was a Fulbright Researcher at the Au-
tomation and Robotics Research Insti-
tute, Arlington, USA, under Prof. Frank
Lewis. Currently, he is a Full Professor

15

https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/LCSYS.2020.3001875
https://doi.org/10.1145/3575870.3587120
https://doi.org/10.1145/3575870.3587120
https://doi.org/10.23919/ECC57647.2023.10178201
https://doi.org/10.23919/ECC57647.2023.10178201
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1007/s10846-021-01383-5
https://doi.org/10.1109/SMC.2019.8914154
https://doi.org/10.1109/ICUAS54217.2022.9836083
https://doi.org/10.1007/s10846-023-01879-2
https://doi.org/10.1007/s10846-023-01879-2

at the Laboratory for Robotics and Intel-
ligent Control Systems (LARICS), Uni-

versity of Zagreb. Bogdan has coauthored four books and nu-
merous articles on topics such as autonomous systems, aerial
robotics, multi-agent systems, intelligent control systems, bio-
inspired systems, and discrete event systems.

Martin Saska (Member, IEEE)
holds an M.Sc. from Czech Techni-
cal University (2005) and a Ph.D. from
the University of Wuerzburg, Germany.
He was a Visiting Scholar at the Uni-
versity of Illinois at Urbana-Champaign
(2008) and the University of Pennsyl-
vania (2012, 2014, and 2016). Since
2009, he has been with the Czech Tech-
nical University, first as a research fellow
and then as an associate professor, lead-

ing the Multi-Robot Systems Lab and co-founding the Cen-
ter for Robotics and Autonomous Systems. Saska has au-
thored/coauthored more than 90 peer-reviewed conference pa-
pers and 60 journal publications.

16

	Introduction
	Related work
	Contributions

	Problem Description
	Preliminaries
	System definition
	Signal temporal logic
	Robust signal temporal logic
	Smooth approximation
	Weighted signal temporal logic
	STL motion planner

	Problem Solution
	Specification mapping
	MILP encoding
	Event-based replanner
	Attrition-aware planner

	Experimental Results
	Wind turbine inspection
	Comparative analysis with the initial guess solution
	Attrition-aware and event-triggered replanner
	Field experiments
	Discussion

	Conclusions

