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Abstract

The widespread adoption of electric vehicles (EVs) requires a well-developed charging infrastructure and efficient management
strategies. In this context, providing charging opportunities for employees during working hours presents a promising approach.
This paper proposes a parking management system for EVs in a corporate setting, designed to optimize the allocation of vehicles
to charging stations throughout the workday while managing the power flow to minimize costs and enhance participation in various
energy markets. The system addresses real-world challenges, including asynchronous booking requests, stochastic variations in
EVs usage, and disparities between the number of charging stations and the demand for charging typically with fewer stations than
EVs requiring service. Additional practical constraints are considered, such as variations in charging station characteristics and
employees’ availability constraints, which may prevent them from plugging in or retrieving their vehicles at certain times. The
proposed solution is designed as a service-oriented system capable, at the same time, of dynamically allocating and rescheduling
charging sessions in response to user requests. Deterministic, such as confirmed bookings, and forecast data have been integrated
in the proposed solution to improve operational efficiency.

1. Introduction

The broad diffusion of electric vehicles (EVs) has high-
lighted the critical need for efficient and accessible charging
infrastructure [1]. Smart parking systems are emerging as a
promising solution in the EV landscape, which allows integra-
tion of EV charging and the public infrastructure [2].

Vehicle-to-Grid (V2G) technology plays a transformative
role by enabling bidirectional power exchange, turning EVs
from passive consumers into active grid participants [3]. This
capability allows EVs to support power grid stability by miti-
gating fluctuations and contributing to reserve services. How-
ever, effectively coordinating the EVs charging and discharg-
ing behaviour for optimal grid participation remains a key chal-
lenge [4].

Beyond technical advantages, V2G technology offers eco-
nomic incentives and supports environmental and social goals
through strategic participation in the electricity markets [5, 6,
7]. V2G systems reduce urban congestion, lower emissions,
and promote sustainable energy practices, benefiting both EVs
users and broader urban communities. Then optimizing the
power management in charging stations and smart parking lots
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becomes crucial for research and development. Indeed, equip-
ping parking lots with charging points transforms them into
dual-function facilities, offering both parking and charging ser-
vices, particularly beneficial for locations with extended park-
ing hours, such as office buildings, shopping malls, and air-
ports [8]. However, energy management within these systems
is complex due to uncertainties such as arrival and departure
times, initial state of charge (SOC), and variable energy con-
sumption [9]. In [10] an optimization model that addresses the
EV users’ preferences in terms of economic and quality of ser-
vice (QoS) dimensions is analysed.

Moreover, another challenge is related to the management
of the congestion in parking lots due to a limited number of
charging stations [11, 12]. Previous research has explored
metaheuristic-based charging scheduling [13] to create a charg-
ing schedule for EVs with a reservation system, but this so-
lution proved to be slow for real-time implementation. Fur-
thermore, energy aggregators participating in wholesale mar-
kets must handle uncertainties in ancillary services while op-
timizing revenue through V2G operations [14, 15].In [16] the
authors deal with a deep learning-based framework for day-
ahead optimal charging scheduling while in [17] a day-ahead
co-optimization algorithm to minimize energy losses and trans-
formers operating costs simultaneously is proposed. This paper
proposes a parking management system for a corporate setting
with a limited number of charging stations, where employees
charge their EVs during work hours. Users can book charg-
ing slots by specifying arrival and departure times, desired final
charge level, and unavailable time slots (e.g., due to meetings
or work commitments). The presented approach is based on a
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mixed-integer linear programming (MILP) model.
Recent studies have explored MILP models for smart parking

and the integration charging stations with renewable energy and
storage systems, some of them primarily focusing on compo-
nent sizing [18, 19]. Earlier work has examined power manage-
ment in public parking facilities with pre-allocated EVs [20].
Other MILP formulations address EVs aggregator policy [21]
and EVs fleet charging from photovoltaic sources [22, 23] but
differently from our study, they focus only on energy balance
in the ancillary services market (ASM), overlooking techni-
cal constraints such as ramp rates and minimum delivery du-
rations. Similarly, studies modeling EVs charging and dis-
charging in solar-powered parking lots exclude participation
in the day-ahead market and fail to consider stochastic EVs
arrivals [24]. In [25] is presented a research on battery en-
ergy storage systems sizing for EVs parking lots which applies
stochastic methods for demand estimation but does not incorpo-
rate real-time operational constraints. A V2G control strategy
proposed in [26] optimizes EVs charging stations for ASM and
day-ahead market participation but does not account for intra-
day market adjustments.

Our work extends the results presented in [27], where an op-
timization framework is proposed for day-ahead EVs charging
scheduling in a corporate parking lot. We improve the frame-
work by considering various uncertainties and enforcing par-
ticipation in energy markets. The system’s cost function pri-
oritizes charging during optimal time slots and, at the same
time, considers a scheduling problem for the (limited) recharg-
ing spots, while promoting market participation, ensuring each
EVs reaches its desired SOC by the end of the workday. This is
obtained by playing on the energy markets, by considering the
day-ahead and the ancillary services. Unlike [27], our approach
explicitly integrates infra-day market operations, enabling dy-
namic energy trading to optimize both charging costs and grid
contributions.

Furthermore, we consider the possibility of a flexible quality
of service, where employees can accept or refuse a final SOC
that differs from their initial request. Our approach accounts
for a realistic scenario where the number of charging stations is
typically lower than the number of EVs request charging, inher-
ently requiring a combined scheduling and power management
solution. The system also supports heterogeneous charging sta-
tions with different technical characteristics.

Also, differently to the earlier works, our framework is de-
signed for an on the field implementation as an online service.
In such a setting, EVs may asynchronously request charging
slots while others are already scheduled or expected to arrive
without prior booking, introducing stochastic elements into the
problem. Additionally, the system allows users to specify “do
not disturb" intervals, ensuring their vehicles are not required
to be plugged in or removed from charging stations during spe-
cific periods. According to this online approach in our paper
we assume that an offline solution has already been computed.
The calculation of an offline management trajectory on histor-
ical/forecasted data, usually a day in advance, has been ad-
dressed in several articles in the literature (see [27]). Our online
approach exploits this day-ahead computed solution to provide

both scheduling and power management in runtime on real data
(commonly different from the forecasted data used for the of-
fline solution). Our algorithm attempts to adhere as much as
possible to the offline computed scheduling but taking into ac-
count real-time deterministic data and realistic operating con-
straints while, at the same time, being fast enough to be pro-
posed as an online service. While in the first part of the pa-
per (up to Section 5) the day-ahead offline solution is assumed
known and only real-time deterministic data are considered for
recomputing an online management, in the second part of the
paper (Section 7 and Section 8) we extend our approach inte-
grating forecasted data with deterministic ones. This extension
is also useful for computing offline solutions the day before by
powering the online management algorithm.

Finally our solution provides, in a unified approach, a more
comprehensive, adaptable, and practical strategy for online EVs
charging scheduling in corporate parking lots. It effectively
manages real-world uncertainties while ensuring that available
resources are optimally allocated.

The paper is organized as follows: in Section 2, a possible
use case is described. The modeling of the smart parking sys-
tem is detailed in Section 3, while the pricing scheme is dis-
cussed in Section 4. Sections 5 and 6 deal with the optimization
problem and the related online management algorithm that tries
to be consistent to a known offline management profile.

Extension to this is proposed in Section 7, where stochastic
EVs behaviour together with deterministic ones is taken into
account. This result can be exploited for real-time management
but it is also a powerful way for computing the offline solu-
tion needed as data in the online algorithm of Section 6. The
extended algorithm implementation related to the scenario ap-
proach is provided in Section 8. Finally, conclusions are sum-
marized in Section 10.

Notation: N and (R+) R are the set of natural and (non-
negative) real numbers, respectively; given a variable ξ ∈ R,
ξ = ξ(t) indicates the value of ξ at the discrete time-step t ∈ N.
With some abuse of notation, [t1, t2] with t1 ∈ N, t2 ∈ N, t1 ≤ t2,
indicates the set of consecutive integers from t1 to t2, while
[ξ1, ξ2] with ξ1 ∈ R, ξ2 ∈ R, ξ1 ≤ ξ2, indicates the interval
from ξ1 to ξ2. The star-superscript notation explicitly refer to
an optimal value, while the barred notation indicates a provided
given value (despite the fact that it will often be an optimal one
in some sense). The notation xi,• with i, j ∈ N indicates the
value of the variable for the given index i and all the j.

2. Setup description and use case

The parking facility considered in this paper is owned and
operated by a private company, that provides to the employee an
area where recharge their EVs during the working day. For the
sake of generality, it is assumed flexible working days, meaning
employees can arrive and leave the job at different times during
the day. Note that a fixed time can be seen as a particular case
of the presented one.

Employees pay for charging their EVs. The corporate sets
electricity buying and selling prices daily, purchasing energy
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to charge EVs and potentially selling surplus energy back to
the grid. The company (that is the parking manager algo-
rithm of the company) operates within known electricity price
profiles throughout the day, both for purchasing and for sell-
ing energy. The parking management system operates across
infra-day, day-ahead, and ancillary service markets, dynami-
cally buying and selling energy to and from EVs during their
parking time while also trading energy with the grid. Indeed,
the aim of the company is to maximize the profit of the park-
ing facility by leveraging energy market participation. By opti-
mizing energy transactions and scheduling EVs efficiently, the
company aims at maximizing its financial return, which could
either increase company revenue or be redistributed among em-
ployees to incentivize EVs adoption in line with sustainabil-
ity goals. The setting considers a possibly number of charging
parking lots less than the total number of EVs owned by the cor-
porate employees. Since charging stations are expensive, the
company seeks to minimize the number of stations while en-
suring high utilization. Therefore, rather than operating many
underutilized stations for only a few hours daily, the company
prioritizes a management strategy that schedules EVs for charg-
ing throughout the whole day.

In order to illustrate how the parking facility works, a typical
usage scenario is described. Employees initially park their EVs
in a general parking area (without charging stations) and move
them to a designated charging station only during their assigned
time slot. When an employee needs to recharge her EV, she no-
tifies to the parking manager through an user interface (whose
development goes beyond the scope of this work), specifying:

• Expected arrival time at work.

• Expected departure time.

• Desired SOC range at the end of the charging session (in-
cluding the option for a full charge).

• Initial SOC upon arrival (either known or estimated by
on board navigation algorithms that provides the arrival
time and the expected consumption and/or residual battery
charge).

• “Do not disturb" time slots, when she cannot put in charge
or remove from charging her vehicle (e.g., due to meet-
ings).

Charging slots can be booked in advance (e.g., up to a day
ahead) or requested on short notice. This flexibility does not
impact the proposed algorithm. Once the request is submitted,
the parking manager assigns a charging station and a charging
interval within the employee’s working hours. The employee
must move her vehicle from the general parking area to the
assigned charging station at the designated time and remove
it promptly at the end of the session. If no feasible charging
schedule can accommodate the employee’s request, the sys-
tem notifies the unavailability. Additionally, the framework in-
cludes a reduced QoS option, where the system proposes an al-
ternative charging schedule with a final SOC different from the

originally requested level. The employee can accept or decline
this offer.

Notice that it could happen that no solutions are possible for
the data provided by the employee. In this case, the manager
notifies the impossibility of the booking. The parking model is
described in details in the next section.

3. Parking model

The considered parking facilities is made up of a set R =
{0, 2, . . . ,R − 1}, R ∈ N, of charging stations, each uniquely
identified by an integer. EVs requesting charging slots are rep-
resented by the set V ⊂ N, with each EV assigned an integer
identifier. Given a finite time horizon for the allocation prob-
lem, EVs requesting charging outside this interval are assigned
new identifiers, i.e., a single physical EV may possess multiple
identifiers across different time intervals.

The assignment of i-th EV to charging station j ∈ R at the
discrete time-step t ∈ N is modelled using the binary variable
ai j(t) ∈ {0, 1}, where ai j(t) = 1 indicates an assignment and
ai j(t) = 0 otherwise. The set of EVs assigned at least once
within the interval [t1, t2], where t1 ≤ t2, is defined as

A(t1, t2) =
{
i ∈ V : ∃t ∈ [t1, t2],∃ j ∈ R s.t. ai j(t) = 1

}
.

Each i-th EV must specify its arrival time αi ∈ N and departure
time δi ∈ N (with αi ≤ δi) when requesting a charging session.
The parking management algorithm operates within a bounded
allocation interval [S , F], with S ∈ N, F ∈ N, S < F, where
F may represent the end of the workday or a defined horizon
length.

Within the interval [S , F], the set of EVs requesting charging
is denoted by

Q(S , F) = {i ∈ V : S ≤ αi ≤ F, S ≤ δi ≤ F}

This set is disjoint from the set of EVs already allocated,
A(S , F), (that is Q(S , F) ∩ A(S , F) = ∅). Since an already as-
signed EV cannot request another assignment within the same
interval. Both Q(S , F) andA(S , F) are assumed to be finite.

The following subsections detail the constraints ensuring the
feasibility of vehicle allocation and the optimization of energy
consumption and resource allocation.

3.1. Vehicles charging power variables
Let us denote with P+i j(t) ∈ R

+ (P−i j(t) ∈ R
+) the power flow-

ing from (to) the charging station j to (from) the vehicle i at
time t. These power flows are constrained by the following lim-
its

0 ≤ P+i j(t) ≤ z+,max
i,• , (1a)

0 ≤ P−i j(t) ≤ z−,max
i,• , (1b)

∀ j ∈ R,∀i ∈ Q(S , F) ∪ A(S , F) and t ∈ [S , F], where z+,max
i,•

(z−,max
i,• ) indicates the maximum actual power flowing in (out)

the i-th EV. Power exchange between vehicle i and station j at
time t can only occur if the vehicle is assigned to the charging
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station, i.e., ai j(t) = 1. To enforce this, we define the actual
power entering and leaving vehicle i as follows

z+i j(t) = P+i j(t)ai j(t) and z−i j(t) = P−i j(t)ai j(t).

These expressions ensure that no power is transferred when
ai j(t) = 0. Thus results in the following mixed integer linear
constraints 

z+i j(t) ≥ 0,
z+i j(t) ≤ ai j(t)z+,max

i,• ,

z+i j(t) ≥ P+i j(t) − (1 − ai j(t))z+,max
i,• ,

z+i j(t) ≤ P+i j(t),

(2)

and 
z−i j(t) ≥ 0,
z−i j(t) ≤ ai j(t)z−,max

i,• ,

z−i j(t) ≥ P−i j(t) − (1 − ai j(t))z−,max
i,• ,

z−i j(t) ≤ P−i j(t),

(3)

∀ j ∈ R, ∀i ∈ Q(S , F) ∪A(S , F), and t ∈ [S , F].
Each vehicle can be connected at most at one station that will

be assigned by our proposed management algorithm as we will
detail below. Therefore, being the assignment unknown at this
stage, for convenience, we define the following variables

z+i,•(t) =
∑
j∈R

z+i j(t), (4)

and
z−i,•(t) =

∑
j∈R

z−i j(t), (5)

∀i ∈ Q(S , F) ∪A(S , F) and t ∈ [S , F].

3.2. Vehicles power rate constraints
To protect battery life, the power entering and leaving each

vehicle is subject to ramp rate constraints, limiting sudden
changes in power flow. These constraints ensure smooth power
variations over time

z+i,•(t + 1) − z+i,•(t) ≤ G+i , (6a)

z+i,•(t + 1) − z+i,•(t) ≥ −G+i , (6b)

z−i,•(t + 1) − z−i,•(t) ≤ G−i , (6c)

z−i,•(t + 1) − z−i,•(t) ≥ −G−i , (6d)

∀ j ∈ R,∀i ∈ Q(S , F) ∪ A(S , F) and t ∈ [S , F − 1], where G+i
and G−i represent the ramp rates for vehicle i when receiving
and supplying power, respectively. These constraints prevent
excessive variations in charging and discharging power over
consecutive time steps.

3.3. Vehicles assignment constraints
Each vehicle requesting a charging slot can be assigned to at

most one charging station at any given time∑
j∈R

ai j(t) ≤ 1, (7)

∀i ∈ Q(S , F) and t ∈ [S , F]. This constraint ensures that an
EV is never assigned to multiple charging stations simultane-
ously. Note that this condition applies only to vehicles request-
ing charging slots, i.e. EVs included inQ(S , F), and not to those
already assigned, i.e. EVs included in A(S , F). The latter, in
fact, must preserve their pre-scheduled allocations to avoid dis-
rupting employee schedules. This is enforced by the following
constraint

ai j(t) = āi j(t), (8)

∀i ∈ A(S , F), ∀ j ∈ R and t ∈ [S , F], where āi j(t) represents
the previously determined assignment status. Thus assures that
assigned vehicles maintain their scheduled slots, preventing any
changes that could disrupt previously planned allocations.

To prevent scenarios where a vehicle temporarily leaves a
charging slot and later re-parks, the assigned charging period
must consist of consecutive time slots within the interval [S , F].
This is enforced through the following constraints

ai j(t) − ai j(t − 1) + 1 ≥ ai j(h), h = t + 1, . . . , F, (9a)
ai j(t) − ai j(t − 1) + 1 ≥ aik(p), p = t, . . . , F, k ∈ R − { j},

(9b)

∀ j ∈ R,∀i ∈ Q(S , F) and t ∈ [S + 1, F]. Each vehicle can
only be assigned a charging slot within its arrival and departure
window

ai j(t) = 0, (10)

∀i ∈ Q(S , F) and t ∈ [S , αi − 1] ∪ [δi + 1, F]. Thus guarantees
that no vehicle is scheduled for charging before its arrival time
αi or after its departure time δi.

Employees may specify unavailability periods during which
they cannot move their vehicle (e.g., due to meetings). For each
vehicle i let Di ⊂ [αi, δi], denote the set of unavailable time
slots. The following constraint ensures that charging assign-
ments remain unchanged during these intervals

ai j(t) = ai j(t − 1), (11)

∀i ∈ Q(S , F) and t ∈ Di, where the initial charging status is
set as ai j(αi − 1) = 0. This prevents the system from scheduling
charging operations at times when the vehicle cannot be moved.

Constraints (6)–(11) collectively define a feasible and struc-
tured charging schedule, balancing efficient resource allocation,
user-defined constraints, and grid stability while ensuring com-
pliance with operational requirements

3.4. SOC constraints
The battery model includes the charging and discharging dy-

namics as in [27]. The evolution of the SOC ei ∈ [0, 1] ⊂ R+
for the i-th vehicle is expressed as

ei(t + 1) = λiei(t) + τ
[
η+i z+i,•(t) −

1
η−i

z−i,•(t)
]
, (12)

∀i ∈ A(S , F)∪Q(S , F) and t ∈ [αi, δi], where τ is the sampling
period, ei(αi) = ei,αi represents the initial battery SOC upon ar-
rival, λi ∈ (0, 1] ⊂ R+ accounts for the self-discharging losses
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and η+i , η
−
i ∈ (0, 1] ⊂ R+ are the charging/discharging efficien-

cies.
To ensure feasibility, the SOC always remains within valid

operational limits

ei(t) ≥ emin
i , ei(t) ≤ emax

i , (13)

with emin
i < emax

i , ∀i ∈ A(S , F) ∪ Q(S , F) and t ∈ [αi, δi]. At
departure, the vehicle SOC should ideally fall within the de-
sired SOC interval specified by the owner, denoted as [e−i,δi , e

+
i,δi

].
Nevertheless, to increase scheduling flexibility, the parking
manager may propose a reduced QoS by allowing some relax-
ation of these SOC bounds. The following constraints codifies
this feature

ei(δi) ≤ e+i,δi + y+δ,i, (14a)

ei(δi) ≥ e−i,δi − y−δ,i, (14b)

y+δ,i ≥ 0, (14c)

y−δ,i ≥ 0, (14d)

y+δ,i ≤ y+,max
δ,i , (14e)

y−δ,i ≤ y−,max
δ,i , (14f)

∀i ∈ A(S , F) ∪ Q(S , F), where the non-negative variables
y−δ,i, y+δ,i represent potential deviations from the requested SOC
range and the constants y+,max

δ,i , y−,max
δ,i indicate the maximum al-

lowed QoS flexibility. Setting y+,max
δ,i = y−,max

δ,i = 0 ensures that
the final SOC must exactly match the requested interval. In con-
trast, setting both values to a sufficiently large constant (e.g.,
greater than emax

i ) allows total relaxation, expanding the solu-
tion space. This enables a trade-off between feasibility and user
satisfaction, where the system can suggest minor deviations to
improve overall scheduling efficiency while keeping the em-
ployee informed of any SOC reductions.

3.5. Charging station constraints

In the general setting we consider, a charging station j can
serve up to N j vehicles simultaneously. This is encoded as∑

i∈A(S ,F)∪Q(S ,F)

ai j(t) ≤ N j, (15)

∀ j ∈ R and t ∈ [S , F]. Notice that while some advanced charg-
ing station support multiple concurrent connections, most ex-
isting infrastructures can only charge a vehicle at the time. This
is obviously represented by operating with N j = 1. Beside
constraint (15), each charging station has a maximum power
that can be delivered (taken) to (from) the vehicles, denoted as
z+,max
•, j ∈ R+ (z−,max

•, j ∈ R+), respectively. The total power sup-
plied or extracted at any given time, must satisfy the following
constraints∑

i∈A(S ,F)∪Q(S ,F)

z+i j(t) ≤ z+,max
•, j ,

∑
i∈A(S ,F)∪Q(S ,F)

z−i j(t) ≤ z−,max
•, j ,

(16)

∀ j ∈ R and t ∈ [S , F].

Certain charging stations may be unavailable at specific
times due to maintenance or other operational constraints. Let
U j(S , F) ⊆ [S , F] represent the unavailable time slots for sta-
tion j. The following constraint ensures that no vehicle is as-
signed to an unavailable charging station

ai j(t) = 0, (17)

∀ j ∈ R, ∀i ∈ A(S , F) ∪ Q(S , F) and t ∈ U j(S , F).

3.6. Power grid connection
The parking manager participates in the infra-day market

(idm), day-ahead market (dam) and the ancillary service market
(asm). The manager can either buy or sell energy on these mar-
kets [27]. Therefore we consider the powers bought (P+idm(t),
P−idm(t), P+dam(t)) and sold (P−dam(t), P+asm(t), P−asm(t)) on these
markets at time t. Within the time interval [S , F], the following
constraints are given for the idm and dam:

P+idm(t) ≥ 0, (18a)
P−idm(t) ≥ 0, (18b)
P+dam(t) ≥ 0, (18c)
P−dam(t) ≥ 0. (18d)

The asm differs from the other markets as it involves real-time
power adjustments in response to grid needs. To do so, the park-
ing manager offers power flexibility through upward (selling
power) and downward (buying power) adjustments. Therefore,
within the time interval [S , F], we have the following constraint

s+(t) ≥ 0, (19a)
s+(t) ≤ s+,max, (19b)
s−(t) ≥ 0, (19c)
s−(t) ≤ s−,max, (19d)

where s(t)− and s(t)+ are the upward and downward adjust-
ment and s(t)−,max ∈ R+ and s(t)+,max ∈ R+ the relative max-
imum values. The actual participation to the ancillary market
by the parking manager at time t is denoted with the boolean
variable m(t) ∈ {0, 1}, where true value stands for participation,
false otherwise. Therefore, a power flexibility variation (z−asm(t),
z+asm(t)) can only be offered when the (time) corresponding
boolean participation variable is true, that is z−asm(t) = s−(t)m(t)
and z+asm(t) = s+(t)m(t). These are rewritten as the following
mixed integer linear constraints

z+asm(t) ≥ 0,
z+asm(t) ≤ m(t)s+,max,

z+asm(t) ≥ s+(t) − (1 − m(t))s+,max,

z+asm(t) ≤ s+(t),

(20)

and 
z−asm(t) ≥ 0,
z−asm(t) ≤ m(t)s−,max,

z−asm(t) ≥ s−(t) − (1 − m(t))s−,max,

z−asm(t) ≤ s−(t),

(21)
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Following [27], the downward (power buying) and upward
(power selling) ancillary service participation is

P+asm(t) = z+asm(t)ω+(t), P−asm(t) = z−asm(t)ω−(t), (22)

whereω−(t), ω+(t) ∈ [0, 1] ⊂ R+ are the downward and upward
service signals provided by the transmission system operator
(TSO). Since the TSO determines ω+(t) and ω−(t) in real-time,
these values are unknown when the parking manager submits
its ancillary service profile.

In some countries, the ancillary service market participation
further requires a minimum size of consecutive time instants,
namely Tasm at which the flexibility must be guaranteed. In our
model, this constraint is given by

m(t) − m(t − 1) ≤ m(h), (23)

with h = t + 1, . . . ,min{t + Tasm − 1, F}, ∀t ∈ [S + 1, F].
In view of the fact that the parking facility is connected to a

single grid dispatch point, the total power balance, within the
time interval [S , F] must be satisfied at each time instant∑

i∈A(S ,F)∪Q(S ,F)

[
z+i,•(t) − z−i,•(t)

]
− P+idm(t) + P−idm(t)

− P+dam(t) + P−dam(t) − P+asm(t) + P−asm(t) = 0. (24a)
P+idm(t) + P+dam(t) + P+asm(t) ≤ P+,max, (24b)
P−idm(t) + P−dam(t) + P−asm(t) ≤ P−,max. (24c)

Since participation in the day-ahead and ancillary service mar-
kets must be pre-decided before online scheduling, the follow-
ing values are fixed during real-time decision-making within
the time interval [S , F]

P+dam(t) = P̄+dam(t), (25a)
P−dam(t) = P̄−dam(t), (25b)
s+(t) = s̄+(t), (25c)
s−(t) = s̄−(t), (25d)
m(t) = m̄(t). (25e)

Remark 1. The constraints provided in this section do not ex-
plicitly prevent power from simultaneously flowing into and out
of the grid. Likewise (12) does not inherently exclude scenar-
ios where a vehicle is both charging and discharging at the same
time. However, such cases are physically meaningless and must
be avoided. A straightforward approach to prevent these unre-
alistic situations would be to introduce mutual exclusivity con-
straints for power inflow and outflow. However, the structure of
the optimization problem itself excludes these solutions, elimi-
nating the need for additional constraints. A detailed explana-
tion is provided in the appendix.

4. Costs

The pricing model follows [27], with the extension to the
infra-day market. At each time instant t, the unit energy price
paid by an EV to the parking manager for charging is denoted
as c+v (t) ∈ R+. Conversely, when the parking manager buys

energy from an EV (i.e., vehicle-to-grid discharging), the unit
price paid to the EV is c−v (t) ∈ R+. The unit prices for energy
purchased from the grid through different markets are indicated
with the real positive variables c+idm(t), c+dam(t) and c+asm(t) re-
spectively, while, the prices at which the parking manager sells
energy back to the grid are c−idm(t), c−dam(t) and c−asm(t). For a re-
alistic and meaningful energy market these prices must satisfy
the following relationships

c−idm(t) < c−dam(t) < c+dam(t) < c+idm(t) < c+v (t) < c−v (t),
c−dam(t) < c−asm(t) < c−v (t),
c+dam(t) < c+asm(t) < c+v (t).

To ensure that borrowing energy from a vehicle and returning
it later does not result in a financial loss for the EV owner, the
pricing scheme must satisfy the constraint

c−v (t) > max
i∈V,t′∈[S ,F]

1
η+i η

−
i

c+v (t′). (26)

These energy prices contribute to the objective function of the
optimization problem formulated below.

4.1. Vehicles recharging cost function

The total cost of energy transactions at each time t includes
multiple components, accounting for EVs charging discharg-
ing, market participation, and QoS reductions. The cost (or
revenue, if negative) associated with charging and discharging
EVs at time t is

Cv(t) =c−v (t)τ
∑

i∈A(S ,F)∪Q(S ,F)

z−i,•(t) − c+v (t)τ
∑

i∈A(S ,F)∪Q(S ,F)

z+i,•(t).

(27)

where τ is the sampling period. This expression captures the
revenue from EV discharging (z−i,•(t)), i.e., energy sold by ve-
hicle to the parking manager at price c−v (t) and the cost of EV
charging (z+i,•(t)), i.e., energy supplied by the parking manager
to vehicle at price c+v (t).

4.2. Market participation cost functions

The cost (or revenue) for participating in the infra-day market
per unit of time is

Cidm(t) =c+idm(t)τP+idm(t) − c−idm(t)τP−idm(t). (28)

The cost (or revenue) for participating to the day-ahead market
per unit of time is

Cdam(t) =c+dam(t)τP+dam(t) − c−dam(t)τP−dam(t). (29)

Analogously to the case of the infra-day and day-ahead, the cost
(or revenue) from participation in the ancillary service market
is

Casm(t) =c+asm(t)τP+asm(t) − c−asm(t)τP−asm(t). (30)
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4.3. QoS reduction cost function
To discourage excessive deviations from the originally re-

quested SOC levels, a penalty cost is introduced when the park-
ing manager applies QoS reductions. The associated cost is
given by

Cy =
∑

i∈Q(S ,F)

w+y,iy
+
δ,i +

∑
i∈Q(S ,F)

w−y,iy
−
δ,i, (31)

where y+δ,i represents the increase in the final SOC beyond the
originally requested maximum, y−δ,i represents the decrease in
the final SOC below the originally requested minimum, and w+y,i
and w−y,i are the corresponding penalty coefficients applied to
these deviations. By incorporating this penalty, the optimiza-
tion framework encourages adherence to the original SOC re-
quests while allowing limited flexibility when necessary.

4.4. Overall power cost function
The constraints described above are essential for computing

the total power cost, which is used in one of the two optimiza-
tion problems formulated later in this work. The overall alloca-
tion cost for a given scheduling interval [S , F] is given by

Jc =

F∑
t=S

[Cv(t) +Cidm(t) +Cdam(t) +Casm(t)] +Cy. (32)

This cost function accounts for the energy transactions related
to EVs charging discharging, participation in the infra-day, day-
ahead, and ancillary service markets, and any penalties associ-
ated with QoS reductions.

4.5. Deviation from the offline scenario cost function
In this part of the manuscript it is assumed that a day-

ahead solution has already been pre-computed over his-
toric/forecasted data. An approach for solving this offline prob-
lem is described in the next following sections. Here, we fo-
cus on how the real-time (run-time) problem should incorporate
these offline results.

The runtime scheduling algorithm aims to adhere as closely
as possible to the offline solution while accommodating dis-
crepancies between offline precomputed data, based on fore-
casts, and real-time data, based on actual conditions. To enforce
this adherence we introduce a deviation cost function

Ja =

F∑
t=S

∑
i∈Q(S ,F)

∑
j∈R

wi j(t)ai j(t). (33)

The weight coefficients wi j(t) are designed to penalize devia-
tions from the offline solution, meaning that allocation ai j(t)
that differs from precomputed assignments incurs higher costs.
While the specific method for selecting wi j(t) does not affect
the optimization framework, a simple yet effective choice is
considering wi j(t) = −1,∀ j ∈ R if vehicle i is allocated at
time t (irrespective of which specific charging station) and
wi j(t) = 0,∀ j ∈ R otherwise. This selection encourages the
real-time algorithm to maintain the same time slots of the of-
fline solution while allowing flexibility in choosing different
charging stations if needed. This approach is adopted for the
numerical validation presented later in the paper.

5. Optimal solution for the parking management problem

To solve the runtime problem, we adopt a two-stages sequen-
tial optimization. First (stage 1) the optimization problem aims
to align the real-time allocation as closely as possible to the
precomputed offline schedule, considering both previously as-
signed vehicles and new charging requests. Second (stage 2)
a further optimization problem minimizes the total power cost
given the allocation obtained in stage 1

5.1. Stage 1: optimal deviation from the offline solution
The first optimization problem, assigns new charging slots

for the set of incoming vehicles Q(S , F), while ensuring the
previously allocated vehiclesA(S , F) retain their pre-scheduled
charging sessions. The objective is to minimize the deviation
cost (33) by solving the following problem

min Ja

s.t.
Vehicles charging power variables (1) − (5),
Vehicles power ramp rate constraints (6),
Vehicles assignment constraints (7) − (8),
SOC constraints (12) − (14),
chargingstation constraints (15) − (17),
Power grid connection (18) − (25).

(34)

Notice that after having solved problem (34) each vehicle i is
either successfully assigned a charging slot or remains unas-
signed if no feasible solution exists. When assigned, the vehi-
cle is allocated to a unique interval [ᾱi, δ̄i] ⊆ [αi, δi] consisting
of consecutive time slots, ensuring continuity in the charging
process.

5.2. Stage 2: optimal power solution
Let us suppose (34) is solved and J∗a is the obtained optimal

cost by taking into account the sets Q(S , F) andA(S , F). Then,
considering the same sets Q(S , F) and A(S , F), the following
optimization problem is designed to exploit potential degree of
freedom in the allocation feasibility space to minimize the over-
all power cost.

min Jc

s.t.
(1) − (25),
Ja ≤ J∗a .

(35)

This ensures that while minimizing power costs, the optimiza-
tion does not introduce excessive deviations from the offline
schedule computed in stage 1.

Key observations include online data compensation, where
unlike the offline problem that relies on forecasts, both (34)
and (35) operate on real-time data, naturally correcting devi-
ations between predicted and actual conditions to improve allo-
cation accuracy. Additionally, flexibility in cost function design
allows problem (35) to be further extended with additional ob-
jectives, such as charging station load balancing to ensure uni-
form ageing of equipment. This two-stage approach effectively
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balances adherence to the offline schedule with cost efficiency,
providing a practical, online solution for managing EV charg-
ing in a dynamic corporate environment.

6. Runtime management algorithm

The optimization problems (34) and (35) are encapsulated in
a runtime algorithm detailed in what follows. All the requests
are collected in a FIFO queue, say it C. When a customer re-
quests for a recharging time slots, she provides its arrival and
departure times [αi, δi], possible unavailability periods Di, the
initial and the final range of SOC, i.e. ei,αi and [e−i,δi , e

+
i,δi

], and
the possible allowed flexibility, y−,max

δ,i and y+,max
δ,i .

We consider the hypothesis that different requests are gener-
ated at different time instants. Excluding multiple requests at
the same time is motivated by the fact that the whole parking
management systems is developed as a cloud service, where
the time each request is inserted into the queue C after being re-
ceived is so fast to make the possibility of having two or more
booking events at the same time practically impossible. How-
ever, in the rare case of simultaneous requests, a random order-
ing can be assigned.

The algorithm is executed any time a triggering event is de-
tected. Thus corresponds to the fact that queue C is not empty,
i.e., at least one EV is requesting a recharge. An high-level de-
scription of the process involved is reported in Algorithm 1.
Notice that, to the sake of clarity, we have omitted the data
needed to the optimization problems (34) and (35). Moreover
we report as output only the arrival and the departure time of
each i-th EV. Indeed the booking is notified to the customer
only with park and pick up times. Power profiles are instead
used “internally” to provide the references, that each charging
station has to follow. These reference values may be updated
dynamically each time Algorithm 1 is executed, but such ad-
justments occur transparently and do not affect the EV owner’s
experience.

Algorithm 1: Process of the parking manager
Input: C, S ∈ R, F ∈ R
Output: A(S , F), Q(S , F), ᾱi, δ̄i
Q(S , F)← ∅;
for i ∈ C do
Q(S , F)← Q(S , F) ∪ {i};
C ← C\{i};
//solve the optimization problem ;
Solve (34);
if (34) is feasible then

Solve (35) which provides [ᾱi, δ̄i];
if EV i accepts [ᾱi, δ̄i] then
A(S , F)← A(S , F) ∪ {i};

end
else

Notify to the EV i the allocation fail;
end

end

7. Scenario approach

The optimization problems proposed in Section 5.1 and Sec-
tion 5.2 are instrumental for the real time management in Algo-
rithm 1.

In this section we change the viewpoint and focus not only
on deterministic aspects but also on optimizing the EVs al-
location according to statistical data. Specifically, together
with the deterministic set Q(S , F) of vehicles requesting allo-
cation and those already allocated (set A(S , F)), we introduce
an additional finite set of vehicles, denoted as Q′(S , F). This
set represents vehicles that are expected to request charging
within the time interval [S , F] but have not yet submitted a
request at the time the optimization problem is executed. Set
Q′(S , F) models historically forecasted employees that are ex-
pected to ask to recharge their EVs. The three sets are mutu-
ally exclusive, ensuring that with Q(S , F) ∩ Q′(S , F) = ∅ and
A(S , F) ∩ Q′(S , F) = ∅.

Since vehicles inQ′(S , F) have not formally requested charg-
ing, their characteristics, such as arrival and departure times αi

and δi, unavailability periodsDi, initial SOC ei(αi), and desired
SOC range [e−i,δi , e

+
i,δi

], are modelled as independent stochastic
variables, each characterized by a known probability density
function. Because the initial SOC is stochastic, the battery dy-
namics in (12) also become a stochastic process, meaning that
ei(t) itself is a stochastic variable.

To differentiate between different realizations of these
stochastic variables, we use scenario indexing. Specifically, for
each vehicle i ∈ Q′(S , F), we denote by ik the k-th realization
of vehicle i, meaning that αik represents the arrival time of i-th
EV in the k-th scenario. The same notation applies to all other
stochastic variables.

Finally, being the downward and upward service signals
ω−(t) and ω+(t) unknown at the time the optimization prob-
lem described later is run, here they are treated as stochastic
variables too.

To manage the parking in such stochastic setting, and to com-
pute the decision variables s−(t), s+(t) that we considered given
in problems (35), (34) (constraints (25)), we adopt a scenario
based approach with sample average approximation. A full de-
scription of these methods is beyond the scope of this paper, for
theoretical details refer to [28] and to [29, 30] for applications
in energy management problems.

In short, the scenario based approach consists in generating a
sufficiently high number K ∈ N of variables realizations. Each
variables realization is called scenario and gives rise to a deter-
ministic set of constraints. The optimization is conducted con-
sidering all the scenarios simultaneously and minimizing the
overall constraints violation.

In view of this, modifications to some of the constraints de-
rived in Section 3 and costs in Section 4 are needed. The latter
are provided in the following subsections.

7.1. Modified constraints for the scenario setting

The modifications to constraints (1)–(9) and (15)–(17) ac-
count for the inclusion of both deterministic requests and the
additional stochastic set, i.e. Q(S , F) ∪ Q′(S , F). The resulting
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constraints are indicated in the following as (1)′–(9)′ and (15)′–
(17)′. Other constraints need to be properly designed to account
for the stochastic setting. They are designed in what follows.

For the EVs in Q′(S , F), constraints (10) are removed. Given
the realization ik, we define an additional cost function to mini-
mize allocation deviations

Qa
ik =
∑
j∈R

F∑
t=S

qa
ik (t)ai j(t),

where the non negative weights qa
ik (t) are defined such that

qa
ik (t) = 0, t ∈ [S , αik − 1] ∪ [δik + 1, F]. A suitable choice

for qa
ik (t) is to assign increasing values as t is far from the inter-

val [αik , δik ], e.g. qa
ik (t) = αik − t, for t ≤ αik and qa

ik (t) = t − δik ,
for t ≥ δik . From this, we define the average allocation cost
across scenarios as

Qa
i =

1
K

K∑
k=1

Qa
ik ,

and the total allocation cost over all stochastic vehicles

Qa =
∑

i∈Q′(S ,F)

Qa
i . (36)

Constraint (11) result in

ai j(t) − ai j(t − 1) ≤ ζD,+ik , j (t), (37a)

ai j(t − 1) − ai j(t) ≤ ζD,−ik , j (t), (37b)

ζD,+ik , j (t) ≥ 0, (37c)

ζD,−ik , j (t) ≥ 0, (37d)

∀ j ∈ R and t ∈ [S + 1, F] with ζD,−ik , j (t) and ζD,+ik , j (t) additional
decision variables. This results in the deviation penalty cost

QDik =
∑
j∈R

F∑
t=S+1

qDik (t)(ζD,−ik , j (t) + ζD,+ik , j (t)),

where qDik (t) = 0 for t < Dik and strictly positive otherwise. The
scenario-based cost function is then defined as

QDi =
1
K

K∑
k=1

QDik ,

and
QD =

∑
i∈Q′(S ,F)

QDi . (38)

Battery dynamics are modified, for those i ∈ Q′(S , F), as

eik (t + 1) = λieik (t) + τ
[
η+i z+i,•(t) −

1
η−i

z−i,•(t)
]
, (39)

for t ∈ [S , F − 1] with eik (αik ) = eik ,αik
initial condition.

The related constraints assume the form

eik (t) ≥ emin
i − ζe,−

ik (t), (40a)

eik (t) ≤ emax
i + ζe,+

ik (t), (40b)

ζe,+
ik (t) ≥ 0, (40c)

ζe,−
ik (t) ≥ 0, (40d)

∀t ∈ [S , F] and

eik (αik ) ≤ eik ,αik
+ y+
α,ik , (41a)

eik (αik ) ≥ eik ,αik
− y−
α,ik , (41b)

y+
α,ik ≥ 0, (41c)

y−
α,ik ≥ 0. (41d)

eik (δik ) ≤ e+ik ,δik + y+
δ,ik , (41e)

eik (δik ) ≥ e−ik ,δik − y−
δ,ik , (41f)

y+
δ,ik ≥ 0, (41g)

y−
δ,ik ≥ 0. (41h)

Constraints in (40) are exploited to penalize the SOC deviations
from the given limits. To do so, the following cost functions are
introduced

Qe
ik =

F∑
t=S

qe
i (ζe,−

ik (t) + ζe,+
ik (t)),

with qe
i positive weight that does not depend on the particular

realization (conversely to (36) and (38)) and

Qe
i =

1
K

K∑
k=1

Qe
ik , Qe =

∑
i∈Q′(S ,F)

Qe
i . (42)

Constraints in (41) are instead used to penalize the violation on
the initial and desired final SOC. To do so, the following cost
are defined

Qαi =
1
K

K∑
k=1

qαi (y−
α,ik + y+

α,ik ), Qδi =
1
K

K∑
k=1

qδi (y−
δ,ik + y+

δ,ik ),

with qαi and qδi positive weights and

Qα =
∑

i∈Q′(S ,F)

Qαi , Qδ =
∑

i∈Q′(S ,F)

Qδi . (43)

When considering the power exchanged with the grid, since the
TSO service signals are not known and, therefore, modeled in
a stochastic way, equations (22) are replaced by

P+asm,k(t) = z+asm(t)ω+k (t), (44a)

P−asm,k(t) = z−asm(t)ω−k (t), (44b)

where the subscript k denotes the k-th realization scenario. Con-
sequently, constraint (24) is replaced by the following relaxed
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one ∑
i∈A(S ,F)∪Q(S ,F)∪Q′(S ,F)

[
z+i,•(t) − z−i,•(t)

]
− P+idm(t) − P+idm(t) + P−dam(t)

+ P−dam(t) − P+asm,k(t) + P−asm,k(t) ≤ ζbal,+
k (t), (45a)∑

i∈A(S ,F)∪Q(S ,F)∪Q′(S ,F)

[
z+i,•(t) − z−i,•(t)

]
− P+idm(t) − P+idm(t) + P−dam(t)

+ P−dam(t) − P+asm,k(t) + P−asm,k(t) ≥ −ζbal,−
k (t), (45b)

P+idm(t) + P+dam(t) + P+asm,k(t) ≤ P+,max + ζ
buy,+
k (t) (45c)

P+idm(t) + P+dam(t) + P+asm,k(t) ≥ −ζbuy,−
k (t) (45d)

P−idm(t) + P−dam(t) + P−asm,k(t) ≤ P−,max + ζsell,+
k (t) (45e)

P−idm(t) + P−dam(t) + P−asm,k(t) ≥ −ζsell,−
k (t) (45f)

ζbal,+
k (t) ≥ 0, (45g)

ζbal,−
k (t) ≥ 0, (45h)

ζ
buy,+
k (t) ≥ 0, (45i)

ζ
buy,−
k (t) ≥ 0, (45j)

ζsell,+
k (t) ≥ 0, (45k)

ζsell,−
k (t) ≥ 0, (45l)

∀t ∈ [S , F]. To the above constraints we associate the following
cost function so as to minimize power imbalance on the scenar-
ios

QP
k =qP

F∑
t=S

(
ζbal,−

k (t) + ζbal,+
k (t)+

ζ
buy,−
k (t) + ζbuy,+

k (t) + ζsell,−
k (t) + ζsell,+

k (t)
)
,

with qP positive weight and

QP =
1
K

K∑
k=1

QP
k . (46)

7.2. Modified costs for the scenario setting
Similarly to the modifications made to the constraints cer-

tain cost functions also need to be adapted for the scenario-
based setting. In particular in (27) we need to account for
A(S , F)∪Q(S , F)∪Q′(S , F) instead ofA(S , F)∪Q(S , F), thus
resulting in (27)′. Coherently, the cost will be denoted as C′v(t).
Furthermore the cost (30) is replaced with

C′asm(t) =c+asm(t)
τ

K

K∑
k=1

P+asm,k(t) − c−asm(t)
τ

K

K∑
k=1

P−asm,k(t). (47)

Finally the cost function (31) is modified to incorporate terms
related to the scenario-based setting. The updated cost function,
denoted as C′y, is expressed as

C′y =
∑

i∈Q(S ,F)

w+y,iy
+
δ,i +

∑
i∈Q(S ,F)

w−y,iy
−
δ,i + Qδ. (48)

This adjustment accounts for additional stochastic considera-
tions in the allocation process.

7.3. Optimal problem for the scenario setting
When expanding the optimization framework to include

stochastic requests Q′(S , F) alongside with the already allo-
cated vehicles A(S , F) and the deterministic requests Q(S , F),
the former overall cost Jc in (32) is substituted with

J′c =ιC

 F∑
t=S

[
C′v(t) +Cidm(t) +Cdam(t) +C′asm(t)

]
+C′y

+
+ ιQ
[
Qa + QD + Qe + Qα + QP

]
. (49)

The above cost takes into account both the modified costs due
to the scenario setting and the costs related to the constraints
violations. The scalars ιC , ιQ ≥ 0 provide adjustable weighting
factors, allowing the optimization to balance cost minimization
and constraint adherence. The final optimization problem is
formulated as follows

min J′c
s.t.
Power variables, power rate, one station assignment (1)′ − (9)′,
Arrival and departure time for deterministic vehicles only (10),
Arrival and departure time for stochastic vehicles only (37),
Unavailability for deterministic vehicles only (11),
Unavailability for stochastic vehicles only (38),
Already assigned vehicles (8),
SOC for deterministic vehicles only (12) − (14),
SOC for stochastic vehicles only (39) − (41),
chargingstation constraints (15)′ − (17)′,
Infra-day and day-ahead market variables (18),
Ancillary service market variables (19) − (21), (23),
Ancillary service market power (44),
Power balance (45).

(50)

8. Offline and runtime management algorithm for the sce-
nario approach

Problem (50) can be conveniently exploited to compute the
P̄+idm(t), P̄−idm(t), s̄−(t), s̄+(t) and m̄(t) to be used in the con-
straints (25) for running Algorithm 1.

These values are computed offline, the day before real-time
scheduling begins, using a historical-data-driven approach.
Since no booking requests have been collected at that point,
both Q(S , F) (incoming deterministic requests) and A(S , F)
(already allocated vehicles) are empty, while all expected future
EV arrivals are treated stochastically and included in Q′(S , F).

Such so defined offline algorithm runs (50) and not only pro-
vides P̄+idm(t), P̄−idm(t), s̄−(t), s̄+(t) and m̄(t), but it is also useful
in deriving, given the ai j(t), the trajectory wi j(t) to be used in
problem (34) of Algorithm 1. It is important to highlight that
problem (34) serves as an approximation to account for sce-
nario realizations when handling real-time EV allocations. A
more precise, but computationally more expensive, alternative
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would be to replace Algorithm 1 with Algorithm 2, which inte-
grates both: the deterministic contributions from incoming ve-
hicles in Q(S , F), the already allocated vehicles inA(S , F), and
the stochastic impact of future incoming requests in Q′(S , F).
Similar to Algorithm 1, Algorithm 2 is executed whenever the
queue C is not empty, meaning at least one new allocation re-
quest is pending.

Algorithm 2: Process of the parking manager
Input: C, S ∈ R, F ∈ R
Output: A(S , F), Q(S , F), ᾱi, δ̄i
Q(S , F)← ∅;
for i ∈ C do
Q(S , F)← Q(S , F) ∪ {i};
C ← C\{i};
//solve the optimization problem where
P̄+idm(t), P̄−idm(t), s̄−(t), s̄+(t) and m̄(t) are
provided by the offline algorithm;

Solve (50) with the additional constraint (25);
if (50) with (25) is feasible then

the optimization problem provides [ᾱi, δ̄i];
if EV i accepts [ᾱi, δ̄i] then
A(S , F)← A(S , F) ∪ {i};

end
else

Notify to the EV i the allocation fail;
end

end

9. Numerical examples

This section presents the numerical evaluation of the pro-
posed algorithms using three test cases. Specifically, in Sec-
tion 9.1 a small-scale parking case is considered, so as to grasp
the proposed strategy on a reduced model. Instead, a larger
parking is considered in Section 9.2. Finally, Section 9.3 pro-
vides a brief illustration of the scenario-based for generating an
offline day-ahead solution accounting for future incoming EVs.

The cost profiles on the three energy markets are derived
from Italian market of a random day in 2024 and provided by
the Italian government GME (Gestore dei Mercati Energetici)
responsible for managing and organizing the electricity and nat-
ural gas markets. For all test cases, the characteristics of the
EVs are randomly generated, regardless of the parking lot size.
Specifically, for each i-th EV we have:

1. the maximum incoming z+,max
i,• and outgoing z−,max

i,• power
are uniformly randomly chosen in the intervals [20, 22]kW
and [10, 20]kW, respectively;

2. the maximum ramp rates for the incoming and outgoing
power, respectively G+i and G−i , are uniformly randomly
chosen in the interval [0.5, 1.5]kW/min;

3. arrival and departure time αi and δi are randomly selected
according to a normal distribution centred, respectively
at 9.00 and 17.00, both with a standard deviation of 1.5
hours;

4. the probability of an unavailability interval (we consider
only at most one unavailability interval per vehicle) is cho-
sen to be 0.2. If present, such interval has a length chosen
randomly with a maximum length of the 15% of the work-
ing day associated at each EV’s owner. The beginning of
the unavailability interval is randomly chosen within the
working day of each EV’s owner;

5. charging and discharging efficiency η+i , η
−
i are uniformly

randomly chosen in the interval [0.94, 0.99];
6. maximum and minimum energy that can be stored, namely

emax
i and emin

i are uniformly randomly chosen in the inter-
vals [30, 60]kW h and [5, 10] kW h, respectively;

7. finally, the initial charge ei,αi is uniformly randomly cho-
sen in the interval [10, 50] % of the emax

i , while the final
charge required by each EV, that is the interval [e−i,δi , e

+
i,δi

],
is randomly selected within the interval [10, 50] % of emax

i .
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Figure 1: SOC evolution of the 10 EVs.
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Figure 2: Allocations of the 10 EVs to the charging stations (−1 denotes no
allocation).

All the simulations are conducted on a 24 hours day with
sampling time of 15 minutes, then the time instant t ∈
{0, 1, . . . , 95}. For simplicity, the results are reported in terms
of hours, but teh simulations have been performed over 96 sam-
ples.

The algorithms developed in this paper have been solved with
Gurobi [31] and modeled with the Pyomo [32] a Python based
open source optimization modeling language.
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9.1. Online parking management on 10 vehicles case

To illustrate the key features of the proposed online manage-
ment algorithm, here we test it on a small-scale parking prob-
lem with 10 vehicles. This setup provides a clear understanding
of the algorithm’s operation on a reduced model. Consistent
with the proposed framework, we assume that a day-ahead so-
lution has already been computed. The task of the online man-
agement algorithm is to optimally handle deviations from this
precomputed plan as they occur in real time. As detailed in
Section 5, the algorithm aims to minimize deviations from the
day-ahead vehicle allocations while dynamically rescheduling
power profiles as needed.

To simulate the testing scenario, we consider 3 charging sta-
tions, each with distinct characteristics generated randomly.
Specifically, for station indexed with 0, N0 = 2, that is two
EVs can be served simultaneously, while for the remaining sta-
tions 1 and 2 we have N1 = 1 and N2 = 1. The maximum
power z+,max

•, j , with j ∈ {0, 1, 2}, each station can deliver is uni-
formly randomly chosen in the interval [45, 75]kW, while the
maximum power z−,max

•, j each station can absorb is uniformly
randomly chosen in the interval [30, 60]kW.

Once the 10 EVs are randomly generated and their day-ahead
allocation and power profiles are computed, they are fed into the
online management Algorithm 1.

To simulate real-world uncertainties, we introduce Gaussian
noise to emulate deviations between planned and real-time data.
Specifically, initial and desired SOC values are modified using
a Gaussian distribution with zero mean and 10% standard de-
viation; arrival and departure times are adjusted using a Gaus-
sian distribution with zero mean and a standard deviation of 45
minutes; unavailability intervals are also shifted using a Gaus-
sian distribution. With these choices, each EV can exhibit sub-
stantial deviations from its day-ahead plan, reflecting realistic
operational challenges. Despite these variations, the proposed
algorithm dynamically adjusts and successfully accommodates
these changes.

Without loss of generality and to ease the exposition, we sup-
pose that the progressive index of each EV is assigned accord-
ing to the order it requests for allocation. That is EV 0 is the
first one asking for allocation in real-time, EV 1 is the second
requesting real-time allocation and so on until EV 9, which is
the last one requesting allocation.

Fig. 1 and Fig. 2 depict the SOC and the allocations (the value
−1 is used to denote no allocation, while values 0, 1, 2 are re-
ferred to the indexes of the three charging stations) of all the
EVs for the online case, respectively. As it is possible to see,
the proposed management algorithm is able to allocate all the
EVs. The power bought and sold on the three markets are re-
ported in Fig. 3.

Further, the comparison with the day-ahead solution is here
reported through a series of selected pictures.

Specifically, Fig. 4 and Fig. 5 report the comparison of the
total allocation (that is, how many vehicles are allocated re-
gardless of which charging station) and the total incoming and
outgoing power. As it is possible to see, despite the fact that
the online case is generated with significant perturbations of
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Figure 3: Bought (+) and sold (−) powers on the three markets: (a) infra-day;
(b) day-ahead; (c) ancillary service for the 10 EVs case.

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5378330

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[h]

0

1

2

3

4

Total allocation

online

day-ahead

Figure 4: Comparison between online (blue) and day-ahead computed (orange)
total parking allocation for the 10 EVs case.
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Figure 5: Bought (a) and sold (b) total power comparison between online (blue)
and day-ahead computed (orange) solutions for the 10 EVs case.

the data used to compute a day-ahead solution, the manage-
ment algorithm try to adhere as much as possible to the planned
vehicles allocated time slots, while modifying (if needed) the
power profiles.

To further highlight the ability of the proposed management
algorithm for finding online solutions, we decided to show the
comparison between online and offline cases of two representa-
tive EVs, namely EV 0 and EV 4 (the first and the middle one
asking for allocation).

They are represented in Fig. 6 and Fig. 7, respectively where
the SOC (a), incoming z+i,• (b) and outgoing z−i,• (c) power pro-
files are shown.
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Figure 6: Comparison between the online (blue) and day-ahead (orange) solu-
tions for EV 0 for the 10 EVs case: (a) SOC; (b) incoming power z+0,•; outgoing
power z−0,•.

Further, as showed in the paper, our algorithm recomputes
at any new allocation request issued by later EVs the power
profiles for the EVs already allocated (the scheduled allocation
does not change).

For the representative EV 0 and EV 4 this is shown in Fig. 8
and Fig. 9, respectively, where the subsequent SOC is shown.
In particular, since EV 0 is the first one asking for allocation, it
is subjected to other nine reschedules (each one triggered by a
new incoming EV). The last reschedule (shot 9) is the one cor-
responding to the actual SOC profile (also reported in Fig. 6(a)
in blue) since no more re-computations will be performed.

13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5378330

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[h]

10

20

30

40

50

[k
W

h
]

e4

online

day-ahead

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[h]

0

5

10

15

20

[k
W

]

z+
4,•

online

day-ahead

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[h]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

[k
W

]

z−4,•

online

day-ahead

(c)

Figure 7: Comparison between the online (blue) and day-ahead (orange) solu-
tions for EV 4 for the 10 EVs case: (a) SOC; (b) incoming power z+4,•; outgoing
power z−4,•.

With the same argument, being EV 4 the fifth vehicle asking
for an allocation, it will be subjected to only five reschedules,
as shown in Fig. 9. Also in this case, the last reschedule (shot
9) corresponds to the actual SOC trajectory.

9.2. Online parking management on 90 vehicles case
We show the effectiveness of the proposed strategy on a big-

ger and more realistic case where we consider 90 EVs asking
for allocation and a parking corporate with 60 recharge stations.
All the stations are equal and can serve only one EV at the time.
This is equivalent to consider, from a modeling point of view,
a unique station with up to 60 contemporary recharges. Data
are randomly generated as described in the introduction to this
section.
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Figure 8: Online computations of the SOC solutions for EV 0 at any new allo-
cation request for the 10 EVs case.
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Figure 9: Online computations of the SOC solutions for EV 4 at any new allo-
cation request for the 10 EVs case.

We report the solution for input and output power on the three
markets in Fig. 10. As it is possible to see, the management
parking is able to satisfy the online requests of all the EVs. The
time to compute a solution for each vehicle request takes around
6s on an Windows Intel i7 equipped machine, compatible with
an online service request. Notice that, since the boolean vari-
ables need to be decided only for the vehicle asking for alloca-
tion at a given time, their number is equal to 9 (the time horizon)
for each optimization problem instance.

Further, we compare the online solution with respect to a pre-
viously computed day-ahead solution on the nominal data. De-
spite the latter are subjected to significant perturbation on the
online case, the management algorithm find a solution whose
allocations adhere reasonably to the day-ahead case, as clearly
illustrated in Fig. 11, where the percentage of the total occu-
pancy (100% corresponds to all the 60 lots simultaneously en-
gaged) is compared. Further, comparison of the total power is
shown in Fig. 12.

We show also the SOC comparison for EV 44 taken as a rep-
resentative example (it is the one requiring allocation after half
EVs). The comparison is reported in Fig. 13.

9.3. Scenario-based offline solution generation
To conclude the numerical illustration, in this subsection we

report a simulation for the scenario based approach developed
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Figure 10: Bought (+) and sold (−) powers on the three markets: (a) infra-day;
(b) day-ahead; (c) ancillary service for the 90 EVs case.

in Section 7. Specifically, we consider the same setting de-
scribed in Section 9.2 (90 EVs and 60 equal charging stations).
We consider the optimization problem (50) where all the 90
vehicles are involved, thus generating a day-ahead offline so-
lution on prevision data. The data of the EVs are generated
randomly as already described at the beginning of this section.
On such data, we construct ten scenarios and optimize over all
of them as we described above. More in details, for each ve-
hicle we randomly change the arrival and departure time with
a zero mean Gaussian distribution of standard deviation of 45
minutes. The same standard deviation is used to randomly shift
the unavailability interval. In addition to this, for each vehicle
the initial SOC and final SOC interval boundaries are modified
in the scenario generation through a zero mean Gaussian distri-
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Figure 11: Comparison between online (blue) and day-ahead computed (or-
ange) total parking percentage allocation for the 90 EVs case.
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Figure 12: Bought (a) and sold (b) total power comparison between online
(blue) and day-ahead computed (orange) solutions for the 90 EVs case.

bution with a 10% standard deviation. Finally, the downward
and upward signals ω−(t), ω+(t) are generated randomly for the
ten scenarios via modifying a given signal (we consider a his-
torical trajectory as basis) with a zero mean and 10% standard
deviation Gaussian distribution.

We deemed the ten scenarios generated in this way suffi-
ciently rich and diverse to be adopted for optimization (50).
The solution of such problem provides an allocation of all the
vehicles across all the scenarios.
In Fig. 14 we report the total allocation (in percentage) of the
whole parking, while the incoming and outgoing power over the
day ahead market is reported in Fig. 15(a). Finally, Fig. 15(b)
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Figure 13: Comparison between the online (blue) and day-ahead computed
(orange) SOC for EV 44 for the 90 EVs case.
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Figure 14: Total parking percentage allocation for the 90 EVs scenario based
case.

reports the average power trajectory on the ancillary service
market for the scenario considered, both incoming and outgo-
ing.

To reduce the number of figures, we do not report the incom-
ing and outgoing power profiles for the single vehicles. Nev-
ertheless, we outline that, as explained in Section 7, the sce-
nario solution can play the role of the day ahead solution that
the management algorithm tries to adhere in real-time (that is
a data for the online problem), as illustrated in Section 9.1 and
Section 9.2.

10. Conclusions

This paper proposes a novel parking management system for
a company which offers to the employees the possibility of
recharge their EVs. The designed management algorithm is
specifically suited for runtime settings where charging occurs
during work hours. Employees can book charging slots, speci-
fying arrival and departure time, desired final charge level, and
unavailable time slots.

The core of the system is a mixed integer linear program ap-
proach that optimizes charging schedules while accounting for
various uncertainties, including arrival and departure times and
initial SOC. The system supports the participation in energy
markets and accommodates also a reduced QoS proposals when
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Figure 15: Bought (+) and sold (−) powers for the 90 EVs scenario based case:
(a) on the day-ahead market; (b) average power on the ancillary service market.

necessary. Furthermore it addresses real-word challenges, such
as asynchronous booking requests and stochastic in EV behav-
ior. By optimizing resource allocation and energy management,
the system ensures that each EV reaches its desired SOC by the
end of the parking session while maximizing an objective func-
tion related to parking operations and energy market participa-
tion.

The solution proposed in the paper offers a comprehensive,
adaptable, and practical framework for online EVs charging
scheduling in company parking lots, effectively overcoming the
limitations of previous works and catering to the real-world
complexities of EVs charging management. This system is
designed for direct deployment in company parking lots and
can be implemented as a service. It manages both booking re-
quests and forecasted data as well as realistic constraints of hu-
man customers, such as desired SOC, time availability and the
fact that, once fixed, an allocation cannot be changed (however
power profiles can be rescheduled),while considering human-
related constraints such as desired SOC, time availability, and
the inability to modify allocations once assigned (though power
profiles can still be rescheduled). It also accounts for infrastruc-
ture constraints, such as heterogeneous charging station capa-
bilities and a limited number of charging stations compared to
the number of EVs requiring charging. Moreover, the proposed
algorithm simultaneously solves a scheduling and power man-
agement problem, operating in a dynamic setting that allows it
to respond to new requests in real time and re plan accordingly.
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In this appendix we show that the optimization problem (35)
naturally excludes the possibility of having at the same time in
and out power flows, both from/to the grid and the vehicles. We
will set the discussion without being to formal but informative
enough for the reader so as to grasp the reasons behind this fact.

Let us suppose by contradiction an optimal solution such that
P+,∗idm(t) > 0 and P−,∗idm(t) > 0 at a certain time t.

Problem (35) can be modified in an equivalent way introduc-
ing the decision variable P−+idm(t), the constraint

P−+idm(t) = P−idm − P+idm, (.1)

and modifying (24a) as∑
i∈A(S ,F)∪Q(S ,F)

[
z+i,•(t) − z−i,•(t)

]
+ P−+idm(t)

− P+dam(t) + P−dam(t) − P+asm(t) + P−asm(t) = 0. (.2)

∀t ∈ [S , F]. We can easily show that there exists a feasi-
ble solution that keeps null one variable among P+idm(t) and
P−idm(t) yielding a cost value lower than the one provided by
that with variables P+,∗idm(t), P−,∗idm(t) both strictly positive. In-
deed, if P−+,∗idm (t) ≤ 0, the solution with P̂+idm(t) = −P−+,∗idm (t)
and P̂−idm(t) = 0 is still feasible because satisfies constraints (.1)
and (.2). Furthermore, the cost term c+idmτP̂

+
idm(t) provided by

this solution is lower than c+idmτP
+,∗
idm(t) − c−idmτP

−,∗
idm(t) provided

by the original solution. The latter, indeed, can be rewritten as
c+idmτ[P̂

+
idm(t) + P−,∗idm(t)] − c−idmτP

−,∗
idm(t) which provides the addi-

tional positive cost (c+idm − c−idm)τP−,∗idm(t).
The same reasoning can be done if P−+,∗idm (t) > 0. In this case

the choice P̂+idm(t) = 0 and P̂−idm(t) = P−+,∗idm (t) satisfies the prob-
lem constraints and yields to a cost function −c−idmτP̂

−
idm(t). The

cost term provided by the original solution can be rewritten as
(c+idm−c−idm)τP+,∗idm(t)−c−idmτP̂

−
idm(t) again providing an additional

cost term.
Being the solution that keeps at the same time one of the two

powers null feasible and better than the original one, the latter
is not optimal. This contradicts its optimality hypothesis.

The exact same reasoning can be applied for the powers on
the day-ahead market and ancillary service market or combina-
tions among them.

To exclude the possibility of having an optimal solution that
requires chargingand discharging at the same time a vehicle
i we can conduct a similar reasoning, although slightly more
complex. Again, by contradiction, let us suppose there exists
an optimal solution with z+,∗i,• (t) > 0 and z−,∗i,• (t) > 0 for some
t. Let us also introduce the new decision variable ui(t) with the
constraint

ui(t) = η+i z+i,•(t) −
1
η−i

z−i,•(t). (.3)

The optimization problem can be equivalently written consid-
ering this additional decision variable, constraint (.3) and mod-
ifying (12) as

ei(t + 1) = λiei(t) + τui(t), (.4)

∀i ∈ A(S , F) ∪ Q(S , F). If u∗i (t) > 0 we can consider the can-
didate solution of the optimization problem that differs from

the original one in having the new powers entering and leav-
ing vehicle i respectively as ẑ+i,•(t) > 0 and ẑ−i,•(t) = 0 such that
u∗i (t) = η+i (t)ẑ+i,•(t). Let us call z̃+i,•(t) = z+i,•(t) − ẑ+i,•(t). We obvi-
ously have that η+i z̃+i,•(t) =

1
η−i

z−,∗i,• (t).
From this, it is possible to rewrite the cost contribution of the

original solution c−v τz
−,∗
i,• −c+v τz

+,∗
i,• as c−v τz

−,∗
i,• −c+v τ[ẑ

+
i,•(t)+ z̃+i,•(t)]

which in turns is equal to (c−v η
−
i η
+
i −c+v )τz̃+i,•(t)−c+v ẑ+i,•(t). By re-

membering (26), the term c−v η
−
i η
+
i −c+v is strictly positive. There-

fore, the cost associated to the original solution is higher than
the one (−c+v ẑ+i,•(t) only) of the proposed candidate solution.

However, it is worth to highlight that the candidate solution
does not respect constraint (24a). Indeed, the term z+,∗i,• − z−,∗i,• =

ẑ+i,•+z̃+i,•−z−,∗i,• is replace by the solely term ẑ+i,•. The missing term
z̃+i,• − z−,∗i,• is a positive power entering into the vehicle that need
to be balanced for the new candidate solution via reducing the
imported power from the three markets. This further translates
in an additional reduction of the overall cost.

A similar reasoning can be done in case u∗i (t) ≤ 0. Indeed,
the candidate solution ẑ+i,•(t) = 0 and ẑ−i,•(t) ≥ 0 such that
u∗i (t) = −η−i (t)ẑ−i,•(t) yields to a cost c−v τẑ

−
i,•(t) which is lower

than c−v τẑ
−
i,•(t) + (c−v η

+
i η
−
i − c+v )τz+,∗i,• (t) provided by the original

solution. Also, to satisfy constraint (24a) the additional incom-
ing power term z+,∗i,• (t) − z̃−i,•(t) provided by the original solution
must be compensated by a reduction in imported power, further
lowering the overall cost.

Therefore, irrespective of the sign of u∗i (t), there always ex-
ists a solution with one of the two terms among z+i,•(t), z

−
i,•(t) null

and a reduced imported power which is feasible and provides a
lower cost with respect to a solution that keeps both the terms
z+i,•(t), z

−
i,•(t) strictly positive. In view of this, the hypothesis of

being the latter an optimal solution is contradicted.
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