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Abstract— This article presents Persistence Administered
Collective Navigation (PACNav) as an approach for achieving
decentralized collective navigation of Unmanned Aerial Vehicle
(UAV) swarms. The technique is inspired by the flocking and
collective navigation behavior observed in natural swarms, such
as cattle herds, bird flocks, and even large groups of humans.
PACNav relies solely on local observations of relative positions
of UAVs, making it suitable for large swarms deprived of
communication capabilities and external localization systems.
We introduce the novel concepts of path persistence and
path similarity, which allow each swarm member to analyze
the motion of others. PACNav is grounded on two main
principles: (1) UAVs with little variation in motion direction
exhibit high path persistence and are considered reliable leaders
by other UAVs; (2) groups of UAVs that move in a similar
direction demonstrate high path similarity, and such groups are
assumed to contain a reliable leader. The proposed approach
also incorporates a reactive collision avoidance mechanism to
prevent collisions with swarm members and environmental
obstacles. The method is validated through simulated and real-
world experiments conducted in a natural forest.

I. FULL-VERSION

A full version of this work is available at https:
//iopscience.iop.org/article/10.1088/
1748-3190/ac98e6. To reference, use [1].

II. INTRODUCTION

The use of a group of UAVs can reduce mission time
and provide the redundancy and safety that is critical in
many real-world applications [2]. However, employing a
centralized system to control the motion of all the UAVs
in the swarm can be challenging due to the unavailability
of reliable and real-time information about the environment
and other UAVs in the swarm. Animals, like fish and birds,
serve as prime examples of multi-agent systems that employ
decentralized decision-making for collective motion [3], [4].
For instance, [4] draw insights from animal motion to devise
a set of simple rules addressing attraction and repulsion to
neighbors and alignment with the group, enabling collec-
tive motion. In many cases, decentralized decision-making
systems rely solely on local information about neighbors,
making these methods scalable to a large number of robots.
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This paper introduces a bioinspired decentralized approach
for the collective navigation of a swarm of UAVs, leveraging
onboard sensor data for control without reliance on Global
Navigation Satellite System (GNSS) or communication. By
demonstrating UAVs navigating effectively through a for-
est environment, the approach challenges the stereotype of
swarms being limited to “toy scenarios,” highlighting their
potential for real-world applications. Drawing from collective
motion analysis in animal and human groups, path similarity
and path persistence metrics are designed to compare UAV
trajectories. Individual UAVs follow a target UAV selected
based on these metrics, enabling collective motion. Empha-
sizing safety, the collision avoidance mechanism is tailored
for complex real-world environments. Both simulated exper-
iments and real-world flights in natural forest environments
validate and analyze the approach’s performance and robust-
ness. The related source code has been released as open-
source1.

III. PROBLEM DESCRIPTION

We address the challenge of navigating a UAV swarm,
which lacks communication and global localization capabil-
ities, within an environment containing randomly distributed
obstacles. The objective of the swarm is to collectively
advance towards a goal location known only to a subset
of the UAVs. Navigation relies on on-board sensors for
mapping and localizing obstacles and other UAVs within the
environment.

IV. PROBLEM SOLUTION

We introduce a decentralized control method for UAVs
that rely solely on onboard sensors and computational
resources to govern their motion. As the movement of
each UAV is influenced by the motion of others in the
swarm, collective navigation emerges through the control of
individual UAVs. Our method comprises of two phases: In
the first phase, each UAV determines a suitable target UAV to
follow, and in the second phase, it computes motion control
commands to reach the target while avoiding collisions with
obstacles and other UAVs.

During the first phase, at each time instant k, the i-th UAV
selects a target location di[k] ∈ R2 and plans a path to reach
it. This target can either be the goal position g if the UAV
belongs to the informed subgroup or a neighboring UAV
potentially moving towards the goal g. To select this target,
we generate a set of potential targets Ti[k], considering three
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criteria: (i) UAVs not in close proximity: UAVs close to the
i-th UAV are mostly influenced by the collision avoidance
mechanisms, so only those beyond a certain distance are
considered; (ii) UAVs not moving towards the previous target
position di[k−1]: UAV in moving towards the previous target
are excluded; (iii) UAVs with sufficient path history Hij [k]

2:
Targets must have a path of at least three elements for path
persistence analysis.

In the second phase, if the UAV does not belong to the
informed subgroup, it selects a target di[k] based on path
similarity (σijl) and persistence (γij) metrics. Specifically, it
chooses a target j⋆ from Ti[k] by maximizing a combined
metric of path persistence and similarity. Thus, we can
express this as:

di[k] =
[
Hij⋆ [k]

]
1
, (1)

with

j⋆ = argmax
j∈Ti[k]

γij +
∑

l∈Ti[k]\j

σijl

 . (2)

Once the target is selected, the UAV computes a path to it
while avoiding obstacles and other UAVs. This is achieved
by controlling the UAV velocity, denoted as ui, which is the
sum of navigation and collision avoidance vectors:

ui[k] = ni[k] + ci[k], (3)

where the navigation vector n[k] is determined by the UAV’s
informed status and proximity to neighbors. It guides the
UAV towards the desired target while maintaining cohesion
with the swarm. On the other hand, the collision avoidance
vector c[k] is a combination of vectors aimed at avoiding
obstacles. It responds more assertively to nearby obstacles
and is designed to ensure smooth motion.

In the rest of this section, we explain the process from
the UAV’s perspective, and to simplify the notation, we drop
the subscript i from ni[k] and ci[k] variables. The navigation
vector n[k] is given by:

n[k] = fignI + f̄ignU , (4)

where fig = 1 if, and only if, the UAV has goal information,
while f̄ig is its complementary function. The vector nI is
used if the UAV is informed about the goal and is calculated
as

nI = max

V m, 1−

∑
j∈Ni

∥p̌ij − pi∥

2Rf |Ni|

Kn(an−pi), (5)

where, Ni is the set of neighboring UAVs, V m ∈ (0, 1) is
the minimum normalized velocity of the informed UAV, and
Kn ∈ R is a scaling coefficient to rescale the position vector
to form the velocity control input (ui[k]). The second term
in the max function depends on the average distance from

2It is worth noting that the proposed approach relies on a sequence of
UAV position estimates stored in the matrix Hij [k], referred to as the path
history matrix. Further details about the structure and algorithms for the
update can be found in [1]

the UAVs in Ni. The magnitude of vector nI decreases as
this average distance increases, preventing the informed UAV
from wandering far away from the swarm. The max function
ensures that the UAV always moves with a minimum velocity
of V m.

The collision avoidance vector for an obstacle or ∈ Oi[k]
is obtained by:

cr = max

(
0,

1

∥pi − or∥
− 1

Ro

)
ĉr, (6)

with

ĉr = argmax
b̂∈{ĉ+,ĉ−}

(
b̂ · ui[k − 1]

∥ui[k − 1]∥

)
, (7)

where vectors ĉ+ and ĉ− denote two possible directions of
motion to avoid collision with the obstacle or. To maintain
smooth motion, the vector with the least angular distance
to the previous control input ui[k − 1] is used for collision
avoidance. The magnitude of cr is inversely proportional to
the relative distance to the obstacle, meaning that the UAV
reacts more strongly to nearby obstacles compared to farther
ones. The collision control vector c[k] is a superposition of
collision avoidance vectors of all the obstacles in Oi[k], given
by:

c[k] = Kc
∑
Oi[k]

cr, (8)

where Kc is a scaling coefficient to rescale the summation.

V. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed approach
through simulated experiments using Gazebo and field ex-
periments conducted in a natural forest. Videos showcasing
these experiments are accessible at https://mrs.felk.
cvut.cz/pacnav. Refer to [5], [6] for additional infor-
mation regarding the hardware and software used for the
experiments.
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