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Abstract This paper presents a novel approach to motion planning and risk anal-
ysis for enhancing human-robot collaboration using a Multi-Rotor Aerial Vehicle
(MRAV). The proposed method uses Signal Temporal Logic (STL) to encode key
mission objectives, such as safety, timing, and human preferences, with a strong
focus on ergonomics and comfort. An optimization framework generates dynami-
cally feasible trajectories while considering the MRAV’s physical constraints. Given
the nonlinear and non-convex nature of the problem, smooth approximations and
gradient-based techniques assist in handling the problem’s computational complex-
ity. Additionally, an uncertainty-aware risk analysis is incorporated to assess potential
deviations from the mission specifications, providing insights into the likelihood of
mission success under uncertain conditions. Further, an event-triggered replanning
strategy is implemented to respond to unforeseen events and external disturbances.
The approach is validated through MATLAB and Gazebo simulations, using an object
handover task in a mock-up environment inspired by power line maintenance scenar-
ios. The results highlight the method’s effectiveness in achieving safe, efficient, and
resilient human-robot collaboration.
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1 Introduction

Aerial Robots (ARs), particularly Multi-Rotor Aerial Vehicles (MRAVs), have at-
tracted increasing attention in recent years due to their agility, maneuverability, and
ability to accommodate a wide range of onboard sensors [46, 54]. Their modular
design and versatility make them suitable for a wide range of applications, includ-
ing contactless interactions [5], physical engagements with the environment [64],
wireless communications [36], aerial filming [32], and surveillance and search-and-
rescue missions [50]. These capabilities have proven particularly advantageous in
demanding environments such as high-altitude workspaces [3], wind turbine mainte-
nance [57], large-scale construction sites [41], and power transmission line inspec-
tions [13]. These settings often require specialized personnel, costly equipment, and
dedicated vehicles. Furthermore, they involve significant operational hazards, leading
to labor-intensive tasks that are prone to human error.

Introducing ARs as robotic co-workers [29,65] in such environments offers nu-
merous benefits. These include the ability to assist with tool handling, monitor worker
safety, and alleviate the physical and cognitive burden on human operators [9, 63].
However, the integration of ARs in these scenarios introduce critical safety chal-
lenges that must be addressed to enable seamless human-robot collaboration. More-
over, tasks performed at heights can impose ergonomic challenges due to restricted
mobility and the need to maintain awkward postures. Consequently, ensuring both
safety and human comfort in the design of control solutions for ARs, particularly
multi-rotors, becomes a crucial consideration [67].

Despite extensive research on collaborative Human-Robot Interaction (HRI) in-
volving ground-based robots, fewer studies have focused on aerial robots [4]. Previ-
ous works have explored manipulators assisting humans in handling heavy or bulky
objects and in assembly tasks [27, 62]. Object handover, in particular, has been a key
area of interest [31,47]. However, to facilitate effective human-robot collaboration,
especially in high-risk or hazardous environments, advanced motion planning tech-
niques are essential. These techniques must address ergonomic, safety and comfort
concerns, minimize the physical and cognitive demands on human operators, and
ensure compliance with mission timing and specifications.

Temporal Logic (TL) offers a powerful mathematical framework for defining
complex mission specifications that combine temporal and logical constraints [8]. In
particular, Signal Temporal Logic (STL) [43] is advantageous because it introduces
a metric known as robustness. This robustness metric not only determines whether
a system satisfies given specifications but also quantifies the degree to which the
specifications are fulfilled. This feature allows for the formulation of an optimization
problem that maximizes the robustness score, resulting in the generation of optimal,
dynamically feasible trajectories that meet mission objectives.

In this paper, we present a motion planning framework that leverages STL spec-
ifications to encode collaborative missions involving humans and ARs, with a strong
emphasis on improving ergonomic and comfortable collaboration. To illustrate the
effectiveness of this approach, we use the task of object handover [22] in a power
line maintenance scenario as a motivating example (see Figure 1). The mission re-
quirements are expressed through STL formulae, and the objective is to maximize
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Fig. 1: Illustration of an MRAV facilitating tool delivery to a human worker in a power line scenario.

the robustness of these specifications by solving a nonlinear, non-smooth, and non-
convex optimization problem. This approach generates optimal trajectories that ac-
count for vehicle dynamics and actuation constraints. Additionally, we introduce a
risk-aware analysis that incorporate uncertainties in human pose, providing a sys-
tematic framework to assess and quantify the risks associated with deviations from
STL specifications. An event-driven replanning strategy is also integrated to handle
unforeseen events and external disturbances, ensuring mission continuity.

1.1 Related work

To facilitate collaboration between ARs and humans in shared workspaces, it is es-
sential to integrate HRI principles into the motion planner design. As outlined in
[14,60,61], an ideal planner should address three critical aspects: (i) safety, ensuring
that the robot’s motion does not endanger humans in the environment; (ii) reliabil-
ity and effectiveness, ensuring the robot’s motion considers its dynamics constraints
and effectively complete tasks; and (iii) social acceptability, integrating behaviors
that align with human preferences and social norms to promote smooth, cooperative
interactions.

These elements are crucial for developing a successful HRI planner that fosters
seamless collaboration and coexistence in shared spaces. For example, even in rela-
tively straightforward tasks like object handovers, the AR must be capable of reach-
ing the handover location and approaching the human in a controlled, easily under-
standable, and comfortable manner. This approach enhances the human operator’s
comfort while promoting efficient and safe collaboration, ensuring that the robot’s
intentions are easily recognizable and acceptable to the operator. Ergonomics consid-
erations are key to improving the overall interaction experience.

While the field of aerial HRI is growing [3 1, 67], many human-aware navigation
planners are still rooted in proxemics-based criteria [33,52]. Some alternative meth-
ods include the application of Aerial Social Force Model (ASFM), which allow robots
to approach humans safely [25,26]. Additionally, numerous efforts focus on ensuring
physical safety of ARs operating in close proximity to humans. Safety mechanisms
include imposing constraints on motion planners [45], fine-tuning controller parame-
ters [10], implementing control barrier functions [17], or applying formal verification
techniques [7]. However, these solutions generally overlook comfort and ergonomics
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Table 1: Comparison of addressed features in related papers and our proposed approach: included (v) and
not included (X).

Reference System e Time Physical
Dynamics Ergonomy  Comfort Requirements Safety Limits

[7,10,26,33] X X X X

[49,59] X X X

[3,106] X X

[34,066] X X X

Ours

concerns and often simplify robot dynamics, of both which are critical in human-AR
collaboration frameworks, especially in high-risk environments.

Human ergonomics and comfort have been explored in several studies, partic-
ularly for ground-based robots. For instance, [59] introduced a manipulation plan-
ner that considers factors such as ergonomics and the human’s field of view. Simi-
larly, [49] proposed a method for computing human joint torques based on a dynamic
whole-body model, allowing ground-based manipulators to minimize human joint
overload. However, few of these studies [14,65] specifically address the unique chal-
lenges associated with aerial robots interacting with humans.

In addition to addressing strictly planning aspects, research has also focused on
enhancing perception systems for ARs to detect and respond to human collaborators.
For instance, [| 6] proposed a Nonlinear Model Predictive Control (NMPC) approach
that integrates human ergonomics while also enforcing perception and actuation con-
straints. This system models the human collaborator within the NMPC to predict
future poses and optimize control actions accordingly. Another approach, detailed
in [3], formulated a quadratic programming problem to control an AR interacting
physically with a human. This framework used admittance control to prioritize er-
gonomics and safety while an interaction supervisor adjusted compliance based on
predefined interaction zones around the human operator. While these studies enable
ARs to interact safely and ergonomically with humans, they often fail to address sit-
uations requiring the explicit specification of time-based requirements, comfort pref-
erences, and complex mission objectives. For instance, in certain scenarios, human
safety may require that the robot approaches slowly from the front rather than from
the sides [18,67], or adheres to specific behaviors like maintaining reduced speed [ | 2]
or staying within a defined area for a set time before reaching the human [53]. In such
cases, expressing mission and comfort requirements through formal specification lan-
guages proves beneficial.

In the field of robot controller synthesis based on formal specifications, significant
advancements have been made. For instance, [34] presented a controller generated
from high-level STL specifications for human-robot handovers, ensuring the precise
timing of each handover phase. This approach allows end-users to specify robot be-
haviors using high-level goals rather than low-level control parameters. However, this
method does not address crucial aspects related to ARs, such as the dynamic feasi-
bility of aerial platforms and the need to account for physical actuation constraints.
Similarly, [66] employed probabilistic model checking to ensure safety and liveness
compliance in human-robot handover tasks [6]. However, this approach lacks the ca-
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pacity to manage the continuous, nonlinear dynamics and actuation limits of ARs,
which are essential for safe and stable operations in unpredictable environments. In
addition, [35] proposed a formalism for human-in-the-loop control synthesis, devel-
oping a semi-autonomous controller based on TL specifications. However, this ap-
proach does not explicitly address the unique ergonomic and comfort challenges in-
volved in close-proximity HRIs. This limitation is especially critical in high-risk en-
vironments like power line maintenance, where aerial robots must work seamlessly
with human operators while meeting strict safety and ergonomic standards.

To the best of authors’ knowledge, this paper is the first to address the trajec-
tory planning problem with a specific focus on MRAVs for ergonomic and comfort-
able human-robot collaboration. This approach leverages STL specifications while
fully accounting for the nonlinearity of the MRAV model. Furthermore, a risk-aware
framework is introduced to evaluate the risks associated with meeting complex sys-
tem specifications and trajectory requirements under human pose uncertainty. An
event-driven replanning strategy is also incorporated to manage unforeseen events
and external disturbances, ensuring mission continuity. Table 1 provides a compre-
hensive comparison between related works and our proposed approach, highlighting
the inclusion of key features such as system dynamics, ergonomics, comfort, time
requirements, safety, and physical actuation limits.

1.2 Contributions

This paper introduces a novel motion planning framework for HRI involving MRAVSs,
with a primary focus on enhancing ergonomics and operator comfort. The proposed
approach leverages STL to formally encode mission objectives, encompassing safety,
temporal requirements, and human preferences. By utilizing the expressive capabil-
ities of STL, the proposed method ensures that key aspects of HRI are systemati-
cally addressed. An optimization problem is formulated to generate dynamically fea-
sible trajectories that satisfy these specifications while accounting for physical ac-
tuation limits and dynamics constraints of the aerial platform. Solving this problem
requires addressing a complex nonlinear, non-smooth, and non-convex optimization
challenge. To tackle these complexities, we employ smooth approximations, enabling
the use of gradient-based optimization techniques. The effectiveness of this approach
is demonstrated through an illustrative task: object handovers by an MRAV in a power
line maintenance scenario.

This framework builds upon previous work [13, 56,57] on MRAV task assign-
ment and trajectory generation. [56] introduced an STL-based planner for fleet-based
power line inspection, incorporating obstacle avoidance, inter-robot safety distances,
and energy minimization. [13] extended it to bird diverter installation, addressing
payload constraints and recharging limitations. [57] further refined the framework
with heterogeneous time-bound constraints and a generalized robustness scoring
method. Unlike these works, which do not consider human-robot collaboration, this
framework integrates ergonomic and comfort constraints while embedding the full
nonlinear MRAV dynamics. This ensures stable flight and human safety, which is
crucial as aerial robots cannot be powered down mid-flight. Additionally, it intro-
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duces a systematic risk assessment to quantify deviations due to human pose uncer-
tainty and an event-driven replanner for human-in-the-loop interactions. Designed
for both under-actuated and fully actuated MRAVs [30], the approach is broadly ap-
plicable, with an integrated energy-saving component further optimizing operational
efficiency.

The main contributions of this paper can be summarized as follows:

— The problem of object handovers in a power line maintenance scenario, serving
as a motivating example for human-robot collaboration using an MRAV, is for-
mulated in Section 2. Mission specifications for this problem are established in
Section 4.1, and the corresponding STL formula is derived. An optimization prob-
lem is then formulated to determine dynamically feasible trajectories that satisfy
safety constraints, temporal requirements, and human preferences while adhering
to the STL formula (see Section 4.2).

— The proposed STL optimization problem (Section 4.2) seeks globally optimal so-
lutions but is inherently nonlinear, non-smooth, and non-convex, presenting com-
putational challenges [28,37]. To address these complexities, smooth approxima-
tions (Section 3.4) are introduced, enabling the use of gradient-based optimization
techniques. While gradient-based methods can be sensitive to local optima [1 1],
various practical strategies exist to mitigate this issue, as explored in previous
work [13,57]. Additionally, an energy minimization term is incorporated to im-
plicitly extend the MRAV’s endurance during the mission, contributing to overall
efficiency (see Section 5.2).

— The proposed method includes a risk-aware analysis (see Section 4.3) that con-
siders uncertainties in human pose. This analysis provides a systematic approach
to assess and quantify the risks associated with potential deviations from STL
specifications in the obtained trajectories. It enables the determination of whether
a specified success rate for meeting the given STL specifications (e.g., 80%) can
be reliably achieved or not under uncertain conditions.

— An event-triggered replanning strategy (Section 4.4) is introduced to handle dis-
turbances and unforeseen events during the mission. This approach reshapes the
optimization problem to compute a feasible trajectory that reconnects the drone
to the previously computed optimal offline trajectory.

— Numerical simulations in MATLAB (Section 5) evaluate the method’s overall per-
formance in terms of mission specification fulfillment. Additionally, Gazebo sim-
ulations (Section 5.4), conducted in a mock-up setting, demonstrate the method’s
validity and feasibility under conditions resembling real-world scenarios. Con-
clusions are presented in Section 6.

2 Motivating Example

The primary aim of this paper is to improve the ergonomic and comfortable col-
laboration between humans and aerial robots, specifically in high-altitude work en-
vironments. This research was conducted as part of the AERTAL-CORE European
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project!, which was initiated in response to findings that safety regulation violations
are a leading cause of fatal injuries during maintenance operations on electric power
transmission infrastructures. Enhancing human safety and operational efficiency in
these high-risk environments is a critical motivation for this work.

The scenario under investigation involves an MRAV equipped with a rigidly at-
tached stick carrying a tool, tasked with performing repetitive object handovers to a
human operator in a power line maintenance setting (see Figure 1). During mainte-
nance, the MRAV frequently approaches the operator to deliver the tool, making the
task particularly suited for offline planning. Precomputing trajectories ensures opti-
mization of ergonomic and comfort requirements while accounting for the MRAV’s
physical dynamics and constraints. Given the variability in human pose between suc-
cessive deliveries, it is crucial to assess the robustness and risks associated with
planned trajectories. Evaluating the impact of human pose variations on trajectory
feasibility and safety provides insights into the system’s reliability and its ability to
meet mission objectives. This risk-aware analysis ensures the effectiveness of pre-
planned trajectories under pose deviations, emphasizing its importance for repetitive
and collaborative tasks. The rigid stick attachment eliminates pendulum effects, en-
suring system stability during MRAV motion. While power line maintenance serves
as a motivating example, the principles of ergonomic and safe collaboration are ap-
plicable to a wide range of human-robot interaction scenarios where aerial robots and
human workers collaborate efficiently [27].

In such collaborative tasks, the handover configuration must meet several key cri-
teria: safety, visibility, ergonomics, and comfort, as outlined in prior studies [60,61].
To achieve this, the objective is to design a trajectory for the MRAV that takes into
account human ergonomic needs. The MRAV must be able to approach the operator
from various directions — front, left, right, above, or below — based on the operator’s
preferences [67]. Furthermore, to ensure comfort, the speed of approach is carefully
regulated to enhance the operator’s perception of safety, as described in [12,53].

For simplicity, the handover operation is modeled within a 3D workspace, where
the MRAYV begins its mission already equipped with the tool. Only one object can
be delivered at a time. To meet visibility requirements, the MRAV must first reach a
designated location directly in front of the operator and remain there for a specified
duration before proceeding with the handover. Once the MRAV reaches the operator,
a low-level onboard controller manages the precise handover process, as established
in the authors’ previous work [3, 16]. The MRAV’s operations are subject to physical
actuation limits, particularly in terms of maximum propeller velocity. These con-
straints are critical for ensuring safe interaction with the human operator. The MRAV
must also account for the forces and torques generated by its rotors, which can impact
both the stability of the robot and the comfort of the human operator. Reducing noise
and airflow disturbances generated by the propellers is an important consideration for
minimizing discomfort during the handover process [15].

The primary goal of this study is to plan a trajectory for the MRAV that success-
fully completes the mission within a predefined time frame while adhering to dy-
namic constraints and ensuring safety. Safety requirements include remaining within

I https://aerial-core.eu
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Fig. 2: Schematic depiction of the object handover scenario, highlighting the operator’s preferred handover
region (yellow), the designated location (blue), and obstacles along with the restricted area behind the
operator (red).

the designated workspace, avoiding obstacles, and never approaching the operator
from behind. It is assumed that a detailed environment map, including polyhedral
representations of obstacles, is known in advance. Figure 2 provides a schematic rep-
resentation of the scenario.

Although the schematic representation does not explicitly depict a power line
environment, it serves as a generalized model to clearly illustrate the core components
of the motion planning framework. The principles demonstrated in Figure 2, such as
safety, visibility, and ergonomic handover operations, are directly applicable to real-
world power line maintenance scenarios. This abstraction allows us to emphasize
the versatility and generalizability of the proposed approach, which can be readily
adapted to various high-risk environments where similar human-robot collaboration
requirements exist.

3 Technical Preliminaries

This section introduces the technical preliminaries necessary to understand the con-
tributions of this paper. It provides an overview of the fundamental concepts related
to system dynamics, signal temporal logic, stochastic processes, and risk measures,
which form the basis of the proposed approach. Additionally, to facilitate understand-
ing and improve readability, the notation used throughout the paper is summarized in
Table 2.

3.1 System modeling

Let us consider the discrete-time dynamical model of the MRAV, described as a
Generically-Tilted Multi-Rotor (GTMR) system [3, 1 6], expressed in the general form
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Table 2: Notation - System variables, general symbols and reference frames.

Fw, FB
PV

n, w

Po. 70
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m,J, g

C¢;» Cmi> Pm;

1.6

Zpi
T.R, G

Phum: TThum
t, N, Ts, o

™, 1, pi, pis A
-, N\, V,—

0.8.U.O

M, AP

pr (%), pr(x)

pTF(X’ Y(': E))7 ﬁﬂ'(xv Y('v E))

X, G, P

Z, g, FZ

Y, Y(7 E)

VaRg(Z), CVaRg(Z)
Twss Tobs> Tbheh

Tvr, Tviss Tpr

Tvel> Tpros> TTho

TN, Tyr

_ Nolzs, Npr

Evel’ Fvel Epro’ Fpro» Y

P, 58

Mz, Oz, L

VaRB, VaRg, CVaRB, C}/%R@
Te, Ty, t, ¢, tc

= *

¢p.p

world and body reference frames

MRAYV position and velocity in Fyy

MRAV orientation, and MRAV angular velocity in Fp

MRAV initial position and orientation

number of motor-propeller actuators

MRAV mass and inertia tensor, and gravity vector

force and torque constant parameters related to the i-th pro-
peller’s design, and ¢-th motor position expressed in Fp

MRAV motor forces and torques, time derivatives of forces, and
the squared speed of the i-th motor

unit vector aligned with the -th motor’s axis of rotation
Jacobian matrix mapping w to 7, rotation matrix mapping from
F B to Fyy, and force/torque allocation matrix

human operator position and orientation

time vector, number of samples, sampling period, generic k-th
element of a sequence

STL formula, generic time interval, i-th predicate and its real-
valued function, tunable parameter for 5 (x)

negation, conjunction, disjunction, and implication Boolean op-
erators

eventually, always, until, and next temporal operators

set of real-valued functions and the corresponding predicates
robustness and smooth robustness values of the STL formula 7
robustness and smooth robustness values of the STL formula 7
considering the realization of the stochastic process Y

sample space, o-algebra of X, and probability measure

random variable, element of the sample space X', and CDF for Z
stochastic process and realization of the stochastic process Y
[3-Value-at-Risk and Conditional 8-Value-at-Risk

STL safety requirements

STL visibility and ergonomic requirements

STL comfort and mission requirements

mission duration and visibility time intervals

number of obstacles and number of preference regions

desired minimum and maximum linear velocity, desired mini-
mum and maximum propeller speed, and heading maneuverabil-
ity margin

generic vertices of the rectangular regions defining safety, er-
gonomic, comfort, and mission requirements

energy term and relative weight, and robustness threshold
maximum and minimum values for the MRAV motor forces
mean and covariance of the normal distribution, indicator func-
tion, number of realizations, and level of confidence

lower and upper bounds of VaRg and CVaRg

event-driven period, “waypoint” period, corresponding time vec-
tors, and maximum expected computation time for replanning
replanning threshold, actual and optimal MRAYV positions

Tpt1 = f(ag,ux). Here, zp41, 2, € X C R™ represent the next and current states
of the system at time step k, respectively, and u, € U C R™ is the control input. The
system is actuated by /V,, motor-propeller units, and its dynamics are derived using
the Newton-Euler formalism. These actuators are placed arbitrarily and oriented with
respect to (w.r.t.) the vehicle’s main body. The number of actuators and their orienta-
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Fig. 3: Schematic representation of an GTMR system with its world Fyvv = {Ow,xw,yw, zw } and
body Fg = {Op,xp,yB, zp } reference frames.

tion w.r.t. the vehicle body determines whether the system is an under-actuated or a
fully-actuated platform [30].

The MRAV is described in two reference frames: the world frame Fyy and the
body frame Fp. The body frame is attached to the vehicle’s Center of Mass (CoM),
denoted by Op, as shown in Figure 3. The system’s key parameters include mass
m € R, inertia tensor J € R3*3, position p € R3, and linear velocity v € R?
expressed in Fy. The orientation of the vehicle is described using Euler angles n =
(p,1,%) T = roll, pitch, and yaw, while its angular velocity is given by w € R? in
Fp. The forces generated by the motors are represented as & € R™V», acting on the
vehicle’s CoM.

The force §; and torque 7; exerted by the i-th motor, with ¢ = {1, ..., N, }, on the
vehicle are given by the relations &; = c¢, $2;zp, and 7; = (cf,Pm, X 2p, +¢r,2p,) (2,
where c¢, and c¢,, are constants related to the propeller design, p,,; € R? is the motor
position in Fp, zp, € S? is the motor’s axis of rotation, and £2; € R is the squared
motor speed [3, 16].

To describe the time evolution of the system, a time vector t = (¢, ..., N)T S
RN+ is defined, where N € N represents the number of time steps, and the
system evolves with a sampling period 7, € R+ (. The state x and control input u
sequences are denoted as x = (p,n,v,w, €)' € RO2+Np)XN andu = 5 € RNo XN,
with each k-th element of the sequences (i.e., p, v, etc.) denoted as ey, (i.e., pg, Uk,
etc.). Using the Newton-Euler approach, the MRAV dynamics can be described by
the set of equations:

p=v
m¥ = mg + R(n)GE °
Jw=—-wxJw+ GE

where T(n) € R3*3 is the Jacobian matrix mapping w to 17, R(n) € R3*3 is the
rotation matrix from Fp to Fyy, g = (0,0, —g)" is the gravitational acceleration
vector, and G € RY*Mr is the force/torque allocation matrix [3, 16] mapping the
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forces produced by each actuator to the total force and torque acting on the vehicle’s
CoM.

3.2 Signal temporal logic

STL was first introduced in [43] to monitor and specify the behavior of real-valued
signals over time. It provides a powerful, compact, and unambiguous way to represent
complex system behaviors by encoding mission specifications into a single formula
m [43]. For example, it can capture requirements such as: “At least two vehicles must
survey regions A and B, one must visit region C within the time interval [¢t1, 5], and
all vehicles must adhere to safety constraints”. The formal syntax and semantics of
STL are described in detail in [20,43], but they are not included here for brevity.

In essence, an STL formula 7 is built from a set of predicates p;, where ¢ € Ng.
These predicates serve as atomic propositions that can represent simple system con-
ditions, such as whether a state variable belongs to a certain region or satisfies a
threshold condition. Formally, let M = {u1,..., uz} be a set of real-valued func-
tions of the system state, where p;: X — R. Each predicate p; corresponds to a
subset of the state space X, specifically defined as p;, = {z € X|u;(x) > 0}. To-
gether, these predicates form the atomic propositions AP := {pi,...,pr} used to
define more complex STL specifications.

These predicates can be combined using standard Boolean operators such as
negation (—), conjunction (N\), disjunction (V), and implication (=), as well as
temporal operators. Temporal operators like eventually (), always (), until (U),
and next (), enable STL to specify constraints over non-singleton intervals I C R.
Thus, an STL formula 7 is recursively constructed from predicates p; using the fol-
lowing grammar:

7= T|p|-w|m A malmy Vo ma| OO rr| O w|mUrme,

where 1 and 7o are STL formulae. The resulting STL formula 7 is considered valid
if it evaluates to true (T), and invalid if false (_L). For example, informally, the ex-
pression w1 o implies that formula 7o must hold at some point within the interval
1, and until then, formula 71 must remain continuously satisfied.

3.3 Robust signal temporal logic

System uncertainties, dynamic environmental changes, and unforeseen events can all
impact the satisfaction of an STL formula 7. To introduce flexibility in how well 7
is satisfied and to quantify how effectively a given specification is met, the concept
of robust semantics for STL formulae was developed [20, 24, 43]. This robustness,
denoted as p, provides a quantitative measure to guide optimization towards the most
feasible solution for satisfying the mission specifications. Robustness is defined re-
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cursively using the following formulae:

Ppi (X7 tk?) = /j“i(x7tk)7
p_\ﬂ(X, tk) = —,Oﬂ(X, tk)’
p‘ﬂ'1/\‘ﬂ'2 (X’ tk) = rnin (pﬂ'l (X’ tk)?pﬂ'z (Xa tk))a
p71'1\/71'2 (X7 tk) = max (pﬂ'1 (X, tk’)?pﬂ'z (Xa tk))?
<(%X,tp) = min x, 1),
poreccts) = i | pa(x.1)
X,t;) = ma x,th),
Po (X, t) t;e[t,ﬁ-l]pﬂ( k)
PO (X, te) = pr(x, 1)), with ¢} € [ty + I,
Prittyrs (X, tk) = max (min (pry(x,8,)), min (px (%, t%))
SR ty Eltr,ty]

In this context, ¢;, + I denotes the Minkowski sum of the scalar ¢;. and the in-
terval I. These formulae, as said, are recursively defined from predicates p; and
their corresponding real-valued functions p;(x, tx). Predicates are considered true
if their robustness value is greater than zero (u;(x,t;) > 0) and false otherwise
(i(x, tx) < 0).

The entire formula behaves as a logical expression, evaluating to false if at least
one predicate is false. In simple terms, the STL formula m; A 79 is satisfied if either
w1 or Ty is true. Evaluation follows the application of logical and temporal operators
(e.g., always, eventually, conjunction) from the innermost part to the outermost part
of the formula. For instance, the robustness of the formula could determine whether
and “how well” a system remains inside a target region or avoids an obstacle at a
particular interval /. Further details can be found in [20,21,43]. In this context, we say
that x satisfies the STL formula 7 at time ¢, if pr(x,%;) > 0 (denoted as x(¢1) |= )
and x violates 7 if pr(x,t;) < 0. To simplify notation, we use p,(x) instead of
p=(%,0) when ¢, = 0. Moreover, the value of p,(x, ;) represents “how well” the
formula 7 is satisfied (if p, (x, ;) > 0) or “how much” is violated (if p, (x, tx) < 0),
implicitly introducing a robustness criterion.

With this understanding, control inputs u can be optimized to maximize the ro-
bustness p,(x) over a set of finite state and input sequences x and u. An optimal
control sequence u* is considered valid if the resulting robustness p, (x*) is positive,
where x* and u* adhere to the dynamical system. A higher robustness value p, (x*)
indicates that the system can tolerate greater disturbances without violating the STL
specification.

3.4 Smooth approximation

The computation of p,(x) involves non-differentiable functions like min and max
(see Section 3.3), which can significantly increase the computational complexity,
especially when used in optimization routines. To address this challenge, it is ad-
vantageous to utilize a smooth approximation, denoted as p,(x), of the robustness
function p,(x). This approach facilitates more efficient computations by replacing
the non-differentiable min and max operations with smooth, differentiable alterna-
tives. Hence, considering A € R+ as a tunable parameter, we can express the smooth
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approximation of the min and max operators with S-arguments as follows:

~ E?:l pme)\pﬂi
Sy et

B
: 1 _
mln(pm,...,pm)z—/\log<E e Ap”i) .

In contrast to our earlier work [55, 56], this paper employs an improved smooth
robustness measure [28], which offers significant advantages over the widely-used
Log-Sum-Exponential (LSE) method [20]. This enhanced approach maintains several
key properties, such as asymptotic completeness and smoothness everywhere, simi-
lar to LSE. Additionally, it guarantees soundness, meaning that an optimal control
sequence u* with strictly positive smooth robustness (g, (x) > 0) satisfies the speci-
fication 7, while a sequence u* with strictly negative smooth robustness (g, (x) < 0)
violates it. The property of asymprotic completeness ensures that as the parameter A
increases (A — o0), the smooth approximation j,(x) converges to the true robust-
ness p(x). Moreover, smoothness everywhere guarantees that the approximation is
infinitely differentiable, making it compatible with gradient-based optimization meth-
ods, which are more computationally efficient for solving complex problems [28].
Increasing A improves the accuracy of the approximation, allowing it to better reflect
the true robustness of the system (see Section 3.3).

max(pr, ;- - - s Pry)

3.5 Stochastic processes and risk measure

In addition to interpreting STL formulae over deterministic signals, it is equally im-
portant to extend their interpretation to stochastic processes. To do so, we consider a
probability space (X, G, P), where X represents the sample space, G is a o-algebra
over X, and P is a probability measure mapping from G to the interval [0, 1]. In this
framework, we define a real-valued random vector as Z, which is a measurable func-
tion Z: Y — R™. Forn = 1, Z is referred to as a random variable. Each realization
Z () corresponds to a specific outcome Z, where € € X [23].

Since Z is measurable, we can construct a probability space specifically for it,
which allows us to define a Cumulative Distribution Function (CDF), denoted as
F(2), for the random vector Z. If a measurable function g: R™ — R is applied to Z,
the result g(Z(g)) becomes a derived random variable, because function composition
preserves measurability, as detailed in [23].

Hence, a stochastic process is defined as a function Y : T' x 3 — R", where T
represents the time domain, and for each fixed time ¢;, € T, Y (¢, -) is a random vec-
tor. Essentially, a stochastic process is a collection of random vectors {Y (¢, -)|tx €
T}, with each vector defined on the probability space (X, G, P) and indexed by time.
When ¢ € X is fixed, the function Y (-, ) becomes a realization of the process. Al-
ternatively, a stochastic process can be viewed as a collection of deterministic time
functions {Y(-,¢)|e € X'}, each indexed by elements from X [23]. This duality is
particularly useful for applying STL formulae to systems governed by stochastic pro-
cesses [38].
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Fz(z)

Worst Case CVaRg(Z) VaRg(Z) E(Z) z
<~—— Probability 1 — § —

Fig. 4: Illustration of the expected value E(Z), 8-Value-at-Risk VaR g(Z), and Conditional 3-Value-at-
Risk CVaRg(Z) for a specified risk level 8 € (0, 1). The axes represent the stochastic variable z and its
CDF Fz(z). The shaded area corresponds to %3 of the total area under F'z (z). VaR g (Z) represents the
value of z at the 3-tail of the distribution, while CVaR5(Z) averages the worst-case values of z in the
B-tail. A negative CVaR g(Z) indicates unsafe behavior.

A risk measure is a function R : H(X',R) — R, which maps real-valued random
variables (often referred to as cost random variables) to real numbers. These mea-
sures are critical for assessing risks associated with uncertain outcomes, particularly
in safety-critical applications.

In this paper, we focus on common risk measures, such as the expected value,
B-Value-at-Risk (VaRg), and Conditional $3-Value-at-Risk (CVaRg) at a specified
risk level 5 € (0, 1), as shown in Figure 4. Hence, the VaRg of a random variable
Z: X — Ris defined as:

VaRg(Z) = inf{a € R|Fz(a) > B},

in other words, VaR3(Z) corresponds to the (1 — 3) quantile of the random variable
Z. The CVaR s of the random variable Z is defined as:

CVaRs(Z) = inf (0 + (1= 8)"E(Z - a]")),

where [Z — o]t := max(Z — «,0) and E(-) represents the expected value. In cases
where the CDF Fz of Z is continuous, CVaRg(Z) can be expressed as E(Z|Z >
VaRg(Z)). In simpler terms, CVaRg(Z) represents the expected value of Z under
the condition that Z is greater than or equal to VaRg(Z) [42].

4 Methodology

In this section, we present the motion planning framework designed to address the
mission specifications outlined in Section 2 and expressed as an STL formula 7 (Sec-
tion 4.1). The motivating example focuses on the challenge of object handovers in
a power line maintenance scenario, which highlights the application of human-robot
collaboration with MRAVSs. This task requires solving a complex optimization prob-
lem that is nonlinear, non-smooth, and non-convex, in order to generate dynamically
feasible trajectories that meet safety constraints, temporal requirements, and human
ergonomic and comfort preferences, while ensuring adherence to the STL formula 7.



Title Suppressed Due to Excessive Length 15

To address the computational challenges posed by the robustness function
p=(x), we employ smooth approximations (Section 3.4), which enable the use of
gradient-based optimization techniques. These approximations make the problem
more tractable by facilitating the optimization of the mission’s robustness w.r.t. the
desired system behaviors. Additionally, we enhance the planner by incorporating an
energy minimization term, which implicitly extends the endurance of the MRAV dur-
ing the mission (Section 4.2). This addition not only improves the vehicle’s energy
efficiency but also ensures that the planned trajectory remains feasible under the ve-
hicle’s physical and actuation constraints.

Additionally, we augment the framework with a risk-aware analysis (Section 4.3)
that accounts for uncertainties in human pose. This systematic approach valuates and
quantifies the risks associated with potential deviations from STL specifications, en-
suring that the planned trajectories maintain a high probability of mission success
even in uncertain environments. Lastly, an event-triggered replanner is embedded to
cope with disturbances or unforeseen events (Section 4.4).

4.1 Mission specifications encoding

This section outlines the mission specifications for the problem introduced in Section
2 and defines the corresponding STL formula 7. The scenario involves an MRAV
equipped with a rigidly attached stick carrying a small object, tasked with perform-
ing object handovers in a power line maintenance setting, as depicted in Figure 2.
The mission specifications are categorized into four key areas: safety, visibility, er-
gonomic, and comfort requirements.

The safety requirements are crucial for ensuring safe operation throughout the
mission duration, 7. These include keeping the MRAV within the designated
workspace (7ys), avoiding collisions with surrounding objects (m,ps), and prevent-
ing the drone from approaching the operator from behind (7yep). The visibility re-
quirements ensure that during the mission, the MRAV reaches a designated location
in front of the human and remains there for a specific duration T, () before pro-
ceeding further. While approaching the operator, the drone must align its heading
with the direction of movement (7yis), allowing the operator to maintain continu-
ous visual contact with the small object on the stick. Once the MRAV reaches the
operator, a low-level onboard controller manages the handover process (7). The
ergonomic requirements ensure that the MRAV approaches the operator from their
preferred direction — whether from the front, left, right, above, or below — based on
the operator’s communicated preferences before the mission (7, ), reducing strain on
the operator [67]. The comfort requirements aim to enhance operator comfort during
the mission by limiting the drone’s approach speed (7y.1), as a slower speed increases

perceived safety, as discussed in [12, 53]. Additionally, the maximum propeller ve-
locity is restricted (7o) to reduce noise and wind from the propellers, mitigating
any discomfort for the operator [ 14, 15]. This is especially important in environments

where the operator may be working in close proximity to the drone for extended
periods, as in power line maintenance scenarios.
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Importantly, the role of the proposed planner is to compute the optimal trajectory
for the MRAV from the start to the handover location, leaving the execution of the
handover itself to the onboard system. Example such as those from previous work by
the authors [3, 16] offer viable options, but any appropriate handover algorithm can
be applied based on the specific mission requirements.

Hence, all above mission specifications are combined into the following STL
formula:

m :D[O,TN] (7rws N Tobs A 7Tbeh)/\
(O[O,TNfTvr]D[O,T‘,,]WVJ Z/{[O,TNfTvr] ((ﬂ-pr N Tyel A Tpro A 7Tvis) A . (2)

D[1,TN—TW—1] (Who = O[O,thrl]ﬂ—ho))

The STL formula 7 consists of nine specifications (s, Tobs, Thehs Tvrs Tprs> Tvel,
Tpros TMvis, and mp,) and two time intervals (I and T%.). The following equations
describe each of these specifications:

s = Aj—y PY) € (00, ), (3a)
Tabs = N1y AN DD E (D) 10 BN ) (3b)
Toen = No_y D9 (0, P, (3¢)
T = Ny PV e (p0), p%), (3d)
o = Aoy Ao ( € (py ,pffr)q)) (e)
el = [[V(tR)[|€ (Lyers Pel), (30
Toro = Ngs 2q(th) € (Lpror Tpro), (32
Tyis = Y(tk) € (Puis(te) — ¥, Yuis(tr) + ), with
Wois = atan2(py.) —p Loy — i), (3h)
Tho = Nj—y Y€ (), 5. (3i)

In (3a), the MRAV’s position p\/), where j = {1,2,3}, along the j-axis of the
world frame Fyy, is constrained to remain within the workspace boundaries, defined
by p(J) and p(] ). Obstacle avoidance and the restriction preventing the MRAV from
approachlng the operator from behind are captured by (3b) and (3c), respectively.

Here, N,ps represents the number of obstacles in the environment, with rectangular

regions having vertices (p'7), @ ) o) and (7). p9).) defining obstacle areas and

the region behind the operator, respectively.

The visibility requirements, described in (3d) and (3h), ensure that the MRAV
reaches a designated location in front of the operator and aligns its heading with the
direction of movement. The margin for maneuverability, denoted by v € R, aids
the optimization process by allowing the MRAV to adjust its heading within a de-
fined range, while still meeting visibility and approach requirements. The operator’s
preferences for the drone’s approach direction (front, left, right, above, or below), as
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Fig. 5: Object handover scenario with highlighted approaching regions (yellow) representing the er-
gonomic preferences from top-to-bottom and left-to-right. Reference axes aid in visualizing the drone’s
maneuverability margin (yis = <) in the displacement direction.

detailed in [67], are encoded in (3e). Specifically, the vertices (E;j )q, ﬁ,(;,i),q) define

T,
in order the regions within Fy where the drone is allowed to approach, based on

both the operator’s pose and preferences. These regions are geometrically derived
by extending from the handover location to the stopping area in front of the opera-
tor (m,), based on the operator’s approach preferences (left, right, above, or below).
This creates well-defined approach corridors for the drone to follow. A schematic
representation of this setup is shown in Figure 5.

Comfort requirements, which include limiting the drone’s approach speed and
setting a maximum propeller velocity, are described in (3f) and (3g), respectively.
The parameters (I, Tvel) € Rsg and (T, Tpro) € R set thresholds for the
linear velocity of the drone and the rotational speed of the actuators. The relationship
between the propeller speed (24, with ¢ = {1,..., N}, and the system state x is
detailed in Section 3.1, where the dynamics governing this interaction are thoroughly
explained.

Lastly, (3i) provides guidelines for completing the mission, defining the object
handover position through the boundaries pgjo) and pl(fo) These mission specifications
(3) ensure that the MRAV performs the task safely while considering for operator
comfort and preferences.

The always operators (LJ) in (2) guarantees compliance with time requirements
Tn and Ty, corresponding to the mission duration and visibility requirement, re-
spectively. The eventually operator ({) ensures that the 7, specification is satisfied
within the time frame Ty — T\,. Additionally, the until operator ({/) ensures that the
MRAV does not approach the operator for handover before reaching the designated
location (7ry).

To solve the optimization problem for satisfying these mission specifications, it
is necessary to compute the robustness score p,(x) associated with the STL formula
7. The robustness values, calculated as Euclidean distances in R™, indicate how well
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Fig. 6: System Architecture: The STL Motion Planner at the ground station generates optimal trajectories
(x*,u*) for the MRAV. These trajectories are then fed into the Tracking Controller, which operates in
closed loop to compute the motor forces £, ensuring precise flight maneuvers.

the MRAV adheres to the mission requirements. For instance, a positive robustness
score indicates that the MRAYV is within the specified region, while a negative score
indicates that it has violated constraints, such as entering obstacle areas or approach-
ing the operator from behind. Further details are provided in the authors’ previous
work [13,57], here omitted for brevity.

4.2 Motion planner

In this section, we explain how to generate the trajectory for the MRAV based on the
mission specifications 7. The motion planner is designed as an optimization prob-
lem that produces a feasible trajectory while accounting for the vehicle’s physical
constraints. These trajectories are then used by the tracking controller to execute the
handover task. Figure 6 illustrates the overall system architecture.

Leveraging the robust semantics of STL (see Section 3.3), the motion plan-
ner is synthesized by framing the task of determining a dynamically feasible con-
trol sequence for the MRAV as an optimization problem. This problem seeks to
satisfy a given STL formula 7 (Section 4.1) by optimizing over the control se-

quence u = (ug,...,unx_1)' € RY and the corresponding state sequence X =
(zg,...,xn_1)" € RN*! (see Section 3.1), as follows:

minimize w(x) — pr(X) (4a)

st. xo =x(to), (4b)

Xk+1 = f(Xk7 uk), (4C)

pr(x) = K, (4d)

£< &, <EVE={0,1,...,N —1}. (4e)

In the above equations, (4a) defines the objective function, which consists of two
terms: the energy minimization term £(x) and the robustness degree p.(x). (4b)
specifies the system’s initial state x(¢g), while (4c) models the system dynamics
as xx11 = f(xg,uy), following the GTMR system framework (see Section 3.1).
This ensures that the generated trajectories account for the nonlinear dynamics of
the MRAYV, whether it operates in an under-actuated configuration or a fully-actuated
one [30]. (4d) sets a minimum robustness threshold, acting as a safety margin to en-
sure satisfaction of the STL formula 7 even if the energy prioritization leads to a
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trade-off. Lastly, (4e) imposes the motor force constraints, with £ and £, representing
the vehicle’s minimum and maximum physical actuation limits.

The energy minimization term £(x), part of the objective function (4a), is de-
signed to extend the MRAV’s endurance by reducing energy consumption. This is
achieved through a weight coefficient w € R, which allows for tuning the balance
between energy efficiency and the satisfaction of mission objectives, represented by
the robustness degrees p,(x) of the STL formula 7. A higher w increases the em-
phasis on energy minimization, while a lower w focuses more on meeting mission
objectives. The energy minimization term £(x) includes the power consumption and
kinetic energy, as expressed by the following equation:

I; 0
Z ce 2+ 5 [V W] [“3;’ ﬂ m (5)

where I3 € R3*? and 03 € R3*? are the identify and zero matrices, respectively.

It is crucial to distinguish that, unlike the specification mp,, in (3g), which restricts
propeller velocity (and thus motor forces, see Section 3.1) only during the approach
phase to ensure comfort, the motor force constraints in this optimization guarantee
apply throughout the entire mission. This ensures that the vehicle operates within its
phys1ca1 limits at all times. Typically, the allowable propeller velocity range (L',,,, an

I'pro) is significantly narrower than the range of physically actuable propeller speeds
(€ and £). This limitation minimizes noise and wind, enhancing operator comfort
during close-range interactions.

As described in Section 3.4, the robustness function p.(x) involves non-
differentiable functions like max and min, making it non-differentiable itself w.r.t.
the state x and control inputs u. While various approaches like mixed-integer pro-
gramming solvers [51], non-smooth optimizers [1], or stochastic heuristics [2] can
be employed to find a solution for this problem, it is crucial to acknowledge that the
problem is inherently NP-hard, and these methods may encounter difficulties, particu-
larly as the number of variables increases [ | | ]. However, as demonstrated in [48], one
effective strategy for managing the computational complexity is to adopt a smooth
approximation p, (x) of the robust function p, (x). In this scenario, the resulting op-
timization problem remains nonlinear and non-convex, but it becomes amenable to
smooth optimization techniques such as sequential quadratic programming, which
can help identify a local minimum [ 1].

Thus, the problem (4) can be reformulated by replacing p,(x) with its smooth
counterpart g (x) as follows:

minimize w(x) — pr (%)

S.t. Xg = ( )
Xp1 = £(xg, ug), : (6)
Pﬂ( ) K,

It is important to note that the choice of the parameter A in Section 3.4 signifi-
cantly impacts the problem’s computational complexity. Higher values of A lead to
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a larger number of Degree of Freedoms (DoFs), which in turn increases the compu-
tational burden of solving the optimization problem. Conversely, smaller values of A
impose constraints on the motion planner’s DoFs, potentially resulting in trajectories
that do not satisfy the STL specification. Furthermore, as demonstrated in [48], an
appropriate value of x can be chosen to ensure that the approximation error remains
within a desired bound, such that |p,(x) — pr(x)| < k.

After the successful completion of the optimization process (6), the obtained so-
lution can be transmitted to the onboard tracking controller (such as those described
in [3, 16]) of the MRAV for precise tracking and execution (see Figure 6).

4.3 Uncertainty-aware risk analysis

The motion planner introduced in this paper generates feasible trajectories for an
MRAV, enhancing ergonomic, safety, and comfort considerations in HRI, especially
for tasks performed at heights, such as power line maintenance. Using an object han-
dover task as a motivating example, we address the challenge of uncertainties in hu-
man pose, which can affect the satisfaction of the STL formula 7 and potentially lead
to mission failure. To mitigate this, we propose a risk-aware analysis framework that
assesses and quantifies the risks associated with deviations from STL specifications
(2) in the trajectory derived from the optimization problem (6). This framework eval-
uates whether a given success rate (e.g., 80%) for satisfying STL specifications can
still be achieved under uncertainty, drawing on methodologies presented in [38—40].

While the STL formula 7, as defined in Section 4.1, traditionally applies to deter-
ministic signals represented by the state sequence x, we extend its interpretation to
handle uncertainties using a stochastic process, denoted as Y (see Section 3.5). This
extension accounts for variability in human pose, which directly influences critical
mission elements such as the object handover (7, ), the MRAV’s approach direction
(mpr), heading alignment (7,;s), and safety requirements like not approaching the
operator from behind (7pen). Human pose is modeled as uncertain, with a random
distribution characterized by specific mean (u,) and covariance (o) parameters — for
example, using a normal distribution N (p, o).

For any given realization Y (-, €) of the stochastic process, we can evaluate whether
the realization satisfies the STL formula 7. However, in this stochastic context, sat-
isfaction of m becomes probabilistic — some realizations of Y may satisfy 7, while
others may not. To manage this uncertainty, we apply risk measures, as described in
Section 3.5, to quantify the likelihood that the stochastic process Y fails to satisfy
the STL specification 7. This approach provides a systematic way to handle uncer-
tainty in HRI and ensures that mission objectives are met with a quantifiable level of
confidence.

To compute the level of risk of not satisfying the STL formula 7, the following
steps are taken:

(1) Identify the stochastic elements Y in the mission specifications (see Section 4.1)
that introduce uncertainty, such as human pose or environmental conditions.

(ii) Compute the robustness score pr(x), which evaluates the degree to which the
MRAV satisfies the STL formula 7 under a specific realization Y'(+,¢) of the
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stochastic process. The robustness score indicates how far the system is from
violating or satisfying the mission objectives.

(iii) Apply an appropriate risk measure, such as -Value-at-Risk (VaRg), to quan-
tify the risk of not meeting the STL specification 7. This provides a statistical
threshold for the level of risk posed by uncertainties in the system.

Once the stochastic elements — such as human pose — are identified, we proceed
to compute the robustness score p, (x) for each realization of the stochastic process
Y. The STL formula 7 in (2) consists of two types of predicates: those evaluating
whether the MRAV’s position belongs to a specific region (s, Tyr, Tprs Tvels Tpros
Tyis, and 7y,,) and those ensuring it avoids restricted regions (mops and 7ep). Given
the structural similarities among these predicates, the analysis can focus on two key
ones: 7., which defines the handover location (in (3i)), and 7, Which ensures
the MRAV does not approach the human from behind (in (3c)). These predicates
are critical because they establish the spatial boundaries that the MRAV must either
remain within or avoid for safe and efficient collaboration.

For the handover location, the robustness score p,,  is calculated by measuring
how close the MRAV’s current position is to the defined boundaries of the handover
region. We compute the robustness score as follows:

Pryo (X7 Y('v 5)) = In(H)l (min(Pz(l) (Xv Y('v 6))7 Pr(2) (X7 Y('v 6))7 Pr(3) (Xv Y('v 6))7
e (7)

P (6, Y (), P (5, Y (40)), peio (%, Y (9)) ) ),

with

Prin (%, Y (8)) = p =P (Y (), pren (.Y () = B (Y () — by

Here, the terms foo) (Y(-,¢)) and ﬁfl{)) (Y(-,¢)) represent the lower and upper
bounds of the handover location, modeled as stochastic variables. The robustness
score measures the Euclidean distance between the MRAV’s current position p,(j )
and these bounds, reflecting how uncertainty in the handover location impacts mis-
sion success.

Similarly, for the no-approach-from-behind predicate 7,1, the robustness score

is calculated by taking the inverse of the minimum distance to the boundary, as shown
below:

pﬂ'bch(xvy('ve)) = I;l(le)l<* min<pﬂ<l)(va('ve))7p£(2> (X7Y('7€))7pﬁ(3> (X,Y(-,E)), (8)
P (%Y (), oz (%, Y (,2)), prcn (x, Y (,))) ).

The terms p,.;) (X, Y (+,€)) and pz(;) (%, Y (-, €)) in (8) are computed by replacing
the handover location bounds in (7) with the corresponding bounds for the region
behind the operator Bge)h (x,Y(-,€)) and ;Ege)h(x, Y (-, ¢€)), respectively.

The robustness scores (7) and (8) reflect how uncertainty in human pose affects
satisfaction of the STL specifications. If the robustness score is positive for a given
realization Y'(+, ), the MRAV satisfies the STL formula 7. A zero or negative score
indicates a failure to meet the specification. For simplifying the analysis, we assume
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that the realization Y'(+, €) of the stochastic process Y is time-independent, meaning
the human pose remains constant throughout the mission. In cases where the position
changes, a new trajectory plan is computed for the MRAV, as outlined in Section 4.4.

To evaluate the risk of mission failure under uncertainty, we apply a risk measure,
such as VaR3 or its counterpart, 3-Conditional-Value-at-Risk (CVaR ), as outlined
in Section 3.5. The VaRg provides a threshold value, below which the robustness
score pr(x) is unlikely to fall with a probability of at least 1 — 3. This measure
quantifies the system’s tolerance to uncertainty while still ensuring mission success.
As described in Section 3.5, the formal definition of VaRg is given by:

VaRg(pr(x)) = inf{a € R|F,_(a) > B}, )

where F), (o) represents the CDF of the robustness scores p.. However, since the
exact CDF is often unknown and may require complex computations, such as high-
dimensional integrals [38—40], we adopt a data-driven approach by estimating it using
empirical data from K observed realizations of the stochastic process Y (e.g., human
pose). The empirical CDF is computed as:

1o
Fpo (0 pr(x)) i= 52 DI pr(x) < @), (10)

where I is the indicator function, which returns 1 if the robustness score for the i-
th realization (‘p,(x)) of Y is less than or equal to «, and 0 otherwise. Based on
this empirical data (10), we can calculate upper and lower bounds for VaRg at a
confidence level § € (0, 1), as detailed in [38-40], as follows:

VaRgs(pr(x),d) = inf {a e R|E, (a, pr(x)) — % > ﬁ} , (11a)

In(2/6)
2K

VaR;(pr(x),0) = inf{a e R|E,_(a, pr(x)) + > ﬁ} . (11b)

Thus, by observing K realizations of the stochastic process Y, and selecting an
appropriate values for § € (0, 1), we can calculate upper and lower bounds for VaR3.
This method provides an estimate of the [3-Value-at-Risk, and as the number of re-
alizations K increases, the estimate becomes more accurate, converging to the true
VaRg value. This approach enables us to quantify the risk of the MRAV failing to
meet mission objectives under the inherent uncertainty in human pose.

4.4 Event-driven replanner

As described earlier, the motion planner presented in this paper ensures feasible tra-
jectories for the MRAV, prioritizing ergonomic, safety, and comfort considerations in
HRI. However, during real-time operations, unexpected disturbances — such as bat-
tery issues, technical faults, or wind gusts — can cause significant deviations between
the planned trajectory and the MRAV’s actual state. To address these deviations, we
introduce an online, event-driven replanner.
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When a failure event is detected, a new trajectory is computed online using the
same motion planner described in Sections 4.1 and 4.2. The goal of this replanning
process is to generate a new trajectory that reconnects the MRAV to the previously
optimized trajectory, ensuring minimal disruption to the mission.

Data is collected at specific discrete time instances, denoted by t. The event-
driving period T, € R is a multiple of the sampling period T, and the “topic”
waypoint period T, € Ry defines the frequency of low-rate state updates for the
MRAV (T, > Tj). These discrete time instances are represented as vectors: t =
(to,...,tr)" € R+ andt = (fg,...,tq)" € REH! wheret; C tyandtg C ty.
The term ¢; refers to the [-th element of the vector t, while fg refers to the g-th element
of the vector t.

We define p as the actual position of the MRAV during runtime, which may devi-
ate from the optimal planned position p* due to disturbances. At each time instance
t; € t, the condition |p; — p}| > ( is evaluated, where ( € R is a threshold
designed to trigger an event. If this condition is met, an event is triggered, and the
current MRAV position is communicated to the ground station.

Upon receiving this information, the ground station (see Figure 6) performs an
optimal replanning process for the time interval [¢; + ., fg+1], where t. represents
the maximum expected computation time for replanning, and fg+1 refers to the next
topic waypoint pg41. The computation time ¢, is estimated by running multiple in-
stances of the STL optimization problem under varying conditions, such as different
MRAV initial positions, obstacle placements (mops), Visibility requirements (7;s),
and operator preferences (7is). This ensures that the MRAV computes a feasible tra-
jectory from the triggered position p; to the next topic waypoint pg41, mitigating
discrepancies between the planned and actual trajectories.

It is important to note that the computational effort required for replanning is sig-
nificantly lower than for initial planning. This is because the replanning occurs over a
reduced time interval ([¢;+t, fg+1] < [0, Ty]) and considers a smaller set of mission
specifications. During replanning, only critical safety constraints must be met, such
as remaining within the workspace (mys), avoiding obstacles (mops), and ensuring
the MRAV does not approach the operator from behind (7} ) throughout the mis-
sion’s duration T . Other constraints, such as energy efficiency or precise trajectory
smoothness, are deprioritized in favor of computational efficiency and rapid response
to disturbances, ensuring the MRAV can quickly return to a feasible operational state.

5 Simulation Results

To validate and assess the effectiveness of the proposed planning approach, a series
of simulations were conducted. First, numerical simulations were performed using
MATLAB to evaluate the performance of the planning algorithm and gain insights
into its behavior. This initial phase allowed for the assessment of the planner with-
out the need to explicitly model the MRAV’s dynamics or the trajectory tracking
controller. Following this, the simulations were extended to the Gazebo robotics sim-
ulator to validate the feasibility of the generated trajectories in more realistic set-
tings. These simulations leveraged the advantages of Software-In-The-Loop (SITL)
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Fig. 7: Snapshots from Gazebo simulations illustrating a left-handed, top-to-bottom preferred approach
direction. The blue, red, and yellow regions represent the designated location, no-fly zones, and approach
areas, respectively.

simulations [19, 58], enabling the planner to be tested under conditions that closely
approximate real-world scenarios, including detailed simulation of the MRAV’s dy-
namics and onboard low-level controllers. This transition from MATLAB to Gazebo
offered a more comprehensive validation of the planning approach, considering both
high-level trajectory generation and the dynamic response of the MRAV in realistic
environments.

The simulations were designed to validate several key aspects: (i) the adherence
of planned trajectories to mission requirements; (ii) the capability of our approach
to extend MRAV endurance by comparing energy-aware solutions with those that
do not incorporate energy considerations; (iii) the ability of the system to replan in
response to unexpected disturbances; and (iv) the effectiveness of the proposed risk-
aware analysis framework in assessing and quantifying risks associated with devia-
tions from STL mission requirements under uncertain conditions.

The optimization algorithm was implemented using MATLAB R2019b, with
the STL motion planner developed using the CasADi library? and solved with
IPOPT?. Gazebo simulations were conducted with the GenoM robotics middle-
ware [44] along with the TeleKyb3 software, available on the OpenRobots plat-
form*. All numerical and Gazebo simulations were executed on a computer
equipped with an 17-8565U processor (1.80 GHz) and 32GB of RAM, running
on Ubuntu 20.04. For additional details and visual demonstrations of the sim-
ulation results, readers are encouraged to visit https://mrs.felk.cvut.
cz/stl-ergonomy-risk-analysis. Figure 7 provides snapshots from the
Gazebo simulations, illustrating key moments in the experiments.

2 nttps://web.casadi.org
3 https://coin-or.github.io/Ipopt/
4 https://git.openrobots.org/projects/telekyb3
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Table 3: Parameter values for the optimization problem.

Description ‘ Symbol ‘ Value ‘ Description ‘ Symbol ‘ Value
Min motor forces 3 0.29N Max motor forces I3 11.5N
Weight coefficient w 0.50 [—] Number of motors Np 6[—]
MRAV mass m 2.25kg Inertia J diag{2.07,2.10,3.10} x 102
Force cst. parameter e, 11.5 x 1074[—] Torque cst. parameter cr; 2.38 x 1075[—]
Operator init. position Phum {0.0,0.0,0.0}m Operator init. orientation Nhum {0.0,0.0,0.0}°
MRAV init. position Po {—1.80,0.0,1.0}m | MRAV init. orientation o {0.0,0.0,0.0}°
Number of samples N 170 [—] Sampling period Ts 0.1s
Smooth apprx. parameter A 10[-] Mission duration TN 17s
Max linear velocity Tyel 0.4ms~! Min linear velocity La Oms~?!
Max prop. speed VTpro 80 Hz Min prop. speed /Tporo 40Hz
Level of confidence 8 0.01[—] Heading manu. margin ¥ 30°
Number obstacles Nobs 1[-] Handover location Ppr,3 {1.0,1.0,1.0}m
Number pref. regions Npr 3[-] Number of realizations K 15000[—]
Replanning threshold ¢ 1m Event-driven period Te 0.5s
‘Waypoint period Ty 1s Computation time te 0.4s
Visibility time Tor 5s Robustness threshold K 0.2[—]

5.1 Object handover scenario

The proposed planning strategy was evaluated using the object handover scenario
outlined in Section 2. The simulation environment, depicted in Figure 8, measured
7.2m x 5.7m x 2.5m and included a human operator, an obstacle, and an MRAV
equipped with a rigidly attached stick to perform the handover task. As detailed in
Section 2, the rigid attachment of the stick ensured no pendulum effect during flight,
simplifying the trajectory planning process. This design choice allowed us to focus on
optimizing human-robot collaboration and improving ergonomics through trajectory
planning that respects vehicle dynamics, physical constraints, and ensure mission
completion within predefined temporal requirements. Table 3 lists the key parameters
used to configure the optimization problem. Notably, the mission duration (7’y) and
visibility time (75,,) were intentionally kept short to focus on the critical phases of the
trajectory and avoid unnecessary analysis of extended waiting periods.

Figure 8 illustrates the planned trajectory, incorporating the operator’s preference
for a left-handed, top-to-bottom approach. The figure demonstrates that the trajec-
tory is free of obstacles (m,s) and avoids crossing into the non-approaching area
behind the operator (7ep), in compliance with the safety constraints. Additionally,
the MRAYV follows the designated approach regions within the workspace Fyy, based
on the operator’s pose and preferences (), ensuring that these regions are crossed
in the correct sequence. This ensures safe and efficient navigation while adhering to
both ergonomic and mission-specific requirements. Solving the optimization prob-
lem, which integrates the STL requirements detailed in Section 4.1, required approx-
imately 11 min.

Figure 9 presents data obtained from Gazebo simulations, demonstrating the
planned trajectory’s compliance with mission requirements. The graph demonstrates
that comfort constraints, such as the drone’s speed of approach () and propeller

velocity (7pr,), remain within their respective threshold values, I'ver, L', and Tppo°.

5 To improve readability, the graph displays the propeller rotation speeds, incorporating bounds derived
from motor force constraints (£ and £). Although these constraints are originally expressed in terms of
forces, the corresponding propeller speeds were calculated by inverting the relationship between motor
rotation and forces (see Section 3.1), and the resulting bounds were plotted accordingly. Similarly, for the

propeller speed constraints (I, and I'pro), originally defined as limits on squared motor speeds, the
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Fig. 8: Planned trajectory for the MRAV, showing a left-handed, top-to-bottom preferred approach direc-
tion. Arrows indicate the paths followed by the MRAV throughout the mission.

The visibility requirements are met within the appropriate time frames for reaching
the designated location () and the handover location (my,,), represented by the
blue and yellow time windows, respectively. Unlike the visibility requirement, reach-
ing the handover location has no strict time constraint, which is why the duration
of the yellow windows varies with different approach preferences. This flexibility
allows the MRAYV to adapt its trajectory for smoother collaboration and improved er-
gonomic efficiency. The graph also confirms that the MRAV’s heading angle consis-
tently aligns with its displacement direction (7;s), meeting the directional alignment
requirements. Furthermore, the MRAV operates within its actuation limits, maintain-
ing its lower and upper actuation bounds (£ and &) throughout the mission, thereby
fully utilizing the platform’s capabilities. B

These results highlight the successful integration of ergonomic considerations,
dynamic constraints, and physical actuation limits into the trajectory planning pro-
cess. The proposed method ensures mission objectives are met while maintaining op-
erator comfort, system safety, and efficient collaboration between humans and robots.

Lastly, as discussed in Sections 3.4 and 4.2, the STL optimization problem (4)
was only solvable when using the smooth approximation p,(x) of the robustness
function p, (x), due to the inherently NP-hard nature of the problem. This numerical
evaluation highlights the importance of the smooth formulation (6), which effectively
addresses the non-differentiable aspects of the max and min functions used to encode
Boolean and temporal operators in the STL formula 7 (see Section 3.3), facilitating
the identification of a local minimum.

bounds were converted to equivalent propeller rotation speeds. With a slight abuse of notation, both sets
of constraints are represented on the same plot to simplify interpretation and enhance clarity.
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Fig. 9: Position, orientation, linear and angular velocities, propeller speed, and velocity magnitude for the
planned trajectories based on different operator approach preferences: left-handed top-to-bottom approach
(left), front approach (center), and left-side approach (right). Blue and yellow segments indicate the time
frames for meeting the visibility (7%) and handover requirements, respectively.
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Fig. 10: Planned trajectory for the MRAV, showing a left-handed, top-to-bottom preferred approach direc-
tion, with the energy term excluded from the optimization problem (i.e., setting w = 0 in (6)). Arrows
indicate the paths followed by the MRAV throughout the mission.

5.2 Energy-aware analysis and replanning strategy

This section highlights our approach’s effectiveness in extending MRAV endurance
by comparing energy-aware trajectories with those generated without energy opti-
mization (i.e., setting w = 0 in (6)), as outlined in Section 4.2. Additionally, we
evaluate the event-driven replanning mechanism’s performance in ensuring mission
continuity amid unexpected disturbances, as detailed in Section 4.4. Results from
MATLAB numerical simulations are presented in Figures 10 and 12.

Figure 10 illustrates that trajectories planned without the energy term £(x) in (6)
tend to be longer and exhibit sharper direction changes compared to those incorporat-
ing energy (as shown in Figure 8). This difference arises because, with the inclusion
of the energy term, the optimization problem (6) enforces stricter constraints on al-
lowable actuator rotational speeds, as well as on linear and angular velocities, than
in cases where energy considerations are omitted (w = 0). This approach enhances
MRAV endurance by reducing overall energy consumption while still meeting mis-
sion objectives.

Figure 11 compares energy consumption values between scenarios with and with-
out the energy term £(x) in the STL optimization problem (6), based on data obtained
from Gazebo simulations. The normalized energy term, along with MRAV linear and
angular velocities and propeller speeds, are plotted for both cases. As shown, trajec-
tories without energy optimization result in higher linear and angular velocities and
increased propeller speeds (left plots in Figure 11), making them less energy-efficient
than energy-aware trajectories (right plots in Figure 11). Importantly, in both cases,
the mission requirements encoded in the STL formula 7 are fully met. The constraint
(4d) ensures a minimum robustness level x to satisfy mission objectives, even when
energy optimization might slightly reduce robustness values.
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Fig. 11: Comparison of the normalized energy term, MRAV linear and angular velocities, and propeller
speed for scenarios where the energy term is either included (left) or excluded (right) in the optimization

problem (6).

To assess the performance of the event-driven replanner, MATLAB simulations
were conducted with unexpected disturbances that caused the MRAV to deviate from
its planned trajectory. These disturbances emulate real-world scenarios such as wind
gusts, hardware malfunctions, or operator-induced variability, as outlined in Section
4.4. The replanner effectively detected significant deviations (||p; — pj|| > (), trig-
gering a partial online replanning process to guide the MRAV back to the next “topic”

waypoint (see Figure 12). The newly computed trajectory served as a reference for

the tracking controller (see Figure 6). The optimization process was completed in less
than 1 s for all disturbance events, ensuring rapid trajectory updates.
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Fig. 12: Event-driven replanner trajectories for two disturbance scenarios, showing the MRAV’s left-
handed approach. Black paths indicate deviations from the original trajectory, red paths show updated
trajectories from the replanner, and red markers denote the MRAV’s position (* p; and 2p;) when replan-
ning is triggered.

5.3 Uncertainty-aware risk assessment

As outlined in Section 4.3, this section presents the results of the numerical assess-
ment conducted to validate the proposed uncertainty-aware risk analysis framework.
The evaluation quantifies risks associated with deviations from mission requirements,
encoded in the STL formula 7, for the trajectories derived from the planning problem
(6) under uncertainty in human pose. Specifically, it investigates the extent to which
the human operator can deviate from the planned handover position without violating
mission requirements, thereby necessitating a new execution of the planning problem.

The simulations were conducted in MATLAB, where uncertainty in human pose
was modeled as a stochastic process, Y, following a Gaussian distribution N (1, 0.
This stochastic model captures variability in human position and orientation, which
directly influences mission-critical predicates, including the handover location (7y,,),
approach direction (7, ), and the no-approach-from-behind constraint (m,eh). A total
of K = 15000 realizations of the stochastic process Y were generated to simulate
diverse human poses during the mission. This number balances the computational
cost of generating Y (-, ¢) and ensures reliable, non-conservative estimates.

Four random vectors, *phum, with i = {1,2, 3,4}, were employed to model vari-
ations in the human position, while the human attitude, 1., was fixed to maintain
consistent metrics for trajectory performance evaluation. Although a similar analysis
could involve fixing the position and varying the attitude, human positional uncer-
tainty was prioritized due to its greater impact on trajectory validity, as well as on
ergonomic and comfort requirements. The random vectors for positional uncertainty
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Fig. 13: Histogram of the smooth robustness score pr(x) of the specification 7 in (2), accounting for
uncertainty in human pose (* Prhum, Mhum) for the K realizations.

were defined as follows:

0] [0.125 0 0 0] [o25 0 0
v ~N 0], 0 01250( ], %Phum~N| |0|,]| 0 0250] ],
0 0 0 0 0 0 00
(12)
0] o5 00 0] [0.75 0 0
3pham ~N | 0], ] 0 050] |, “ppam ~N | 0], ] 0 0750
0 0 00 0 0 00

The human attitude, 7num, was modeled using a Gaussian distribution
N(pz,0.), with mean vector g, = (0.07,0.07,0.09)T and covariance o, =
(0.09,0.09,0.52) T

Following the three-step process detailed in Section 4.3, the smooth robustness
score pr(x) was computed using the trajectory presented in Section 5.1 and illus-
trated in Figure 8. This score quantifies the degree to which the MRAV satisfies the
STL formula 7 under a specific realization Y (-, €) of the stochastic process, indicat-
ing how close the system is to either violating or satisfying the mission objectives.
The resulting histograms of p, (x) for the K realizations are presented in Figure 13.
The data show that for lower covariance values in the human position, the probability
of achieving higher robustness scores increases. Conversely, as covariance increases,
the likelihood of obtaining lower robustness scores rises.

Risk measures, including VaRg, were applied to quantify the likelihood of not
satisfying the STL formula 7. Table 4 presents the upper and lower bounds of VaRg
for various risk levels 3. The difference between these bounds, |m@ — MBL
remains small across all 3, indicating that the estimates are tight.

To interpret VaR g, consider it as the threshold value below which the robustness
score pr(x) is unlikely to fall with a probability of at least 8. For example, a VaRg go
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Table 4: Estimated VaRg values for different risk levels 8 and K realizations, considering the human
poses defined in (12).

‘ m0,70 MO.SO ‘ MQ_QQ ‘ VaRo.70 VaRo.80 VaRo.90

(' Phums Mhum) | 0.95771 0.95811 0.95891 0.98429 0.98469 0.98549
(®Phum, Mhum) | 0.95591 0.95631 0.95731 0.98249 0.98289 0.98389
(®Phum, Mhum) | 0.95511 0.95571 0.95651 0.98169 0.98229 0.98309
*Phums Mhum) | 0.95511 0.95571 0.95651 0.98169 0.98229 0.98309

Table 5: Estimated CVaRg values for different risk levels 3 and K realizations, considering the human
poses defined in (12).

| CVaR, 7o | CVaRy g | CVaRg oo | CVaRo.7o | CVaRo.so | CVaRo.00

(' Phums Mhum) 0.015711 0.015311 0.014511 0.042289 0.041889 0.041089
(’Phum; Thum) 0.017511 0.017111 0.016111 0.044089 0.043689 0.042689
(®Phum> Mhum) 0.018311 0.017711 0.016911 0.044889 0.044289 0.043489
(*Phum> Mhum) 0.018311 0.017711 0.016911 0.044889 0.044289 0.043489

of 0.95811 for (" Prum, Mhum) indicates that there is an 80% chance the robustness
score will not drop below this value. Values lower than this threshold represent a
20% risk of violating the STL specifications 7, providing a quantifiable measure of
the system’s tolerance to uncertainty.

The histograms in Figure 13 and the values in Table 4 collectively suggest that
poses with larger covariance, such as (3phum, Thum) and (4phum,nhum), are less
favorable. This is reflected in the lower robustness scores, indicating higher risks of
not meeting mission objectives.

In Table 5, CVaR s values are estimated for various risk levels 8. Similar obser-
vations regarding human poses in (12) can be made. However, the risks are generally
lower because CVaR considers only the tail of the F};_(j.(x)) (see Figure 4). No-
tably, the estimates CVaRg of CVaR are less tight than those for VaR g, with the
difference [CVaRz — CVaR 4| increasing significantly for larger 3, primarily due to
division by 1 — (3 (see Section 3.5).

This analysis highlights the extent to which planned trajectories from (6) remain
compliant with mission requirements, even under human pose uncertainty. As devi-
ations in human position increase, the robustness score j.(x) decreases, providing
a clear measure of the system’s sensitivity to variability. The proposed framework
provides a systematic approach to evaluate trajectory resilience to uncertainty and
quantify robustness levels, ensuring safer and more reliable HRI operations while
maintaining adherence to mission requirements.

5.4 Gazebo simulations

Flight tests conducted in the Gazebo simulator (see Figure 7) successfully validated
the object handover task encoded by the STL formula (2). The simulations demon-
strated adherence to critical physical constraints, including motor force limits (§ and

&), while ensuring compliance with MRAV dynamics. Ergonomic and comfort fea-
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tures, such as propeller velocity constraints (7ye1) and restrictions on the drone’s ap-
proaching velocity (), were also thoroughly evaluated. Furthermore, the visibility
requirement (7,;s) was assessed, ensuring the drone consistently aligned its heading
with its direction of movement, allowing the operator to maintain continuous visual
contact with the small object on the stick. Simulation results are summarized in Fig-
ure 9, with parameter values for the optimization problem detailed in Table 3.

The Gazebo simulation environment was designed to closely replicate the MAT-
LAB scenario, ensuring consistency between both testing frameworks. In the simula-
tion, the designated handover location was represented as a blue region, no-fly zones
(including no-approach areas and obstacles) were highlighted in red, and approach
regions defined by the operator were marked in yellow. For this test, the approach
direction was specified as left-handed, with a top-to-bottom preference, aligned with
mission parameters defined prior to execution.

The system architecture, depicted in Figure 6, integrates the STL-based motion
planner, which solves the optimization problem (6) to generate feasible trajectories
(x*, u*) for the MRAV. This trajectory generation process is performed as a one-shot
computation at the initial time ¢o. The computed trajectories then serve as reference
inputs for the MRAV trajectory tracking controller [3, 1 6], ensuring precise execution
of the planned path.

Videos showcasing the Gazebo simulations are available at https://mrs.
felk.cvut.cz/stl-ergonomy-risk—-analysis, providing a comprehen-
sive visualization of the scenarios and the system’s capabilities.

6 Conclusions

This paper introduced a novel motion planning approach for human-robot collabora-
tion using an MRAYV equipped with a rigidly attached long holder carrying a small ob-
ject, with a focus on ergonomics, comfort, and efficiency for robotics co-workers. The
planner leverages STL specifications to encode diverse mission objectives, including
safety, temporal constraints, and human preferences, highlighting the flexibility and
expressive power of this formal specification language. The approach formulates an
optimization problem to generate dynamically feasible trajectories that meet mission
requirements while accounting for vehicle dynamics and physical actuation limits.
Energy consumption is enhanced through an integrated energy-saving term, min-
imizing consumption and improving operational efficiency. An event-driven replan-
ning strategy was incorporated, enabling real-time trajectory updates in response to
unexpected disturbances, a critical requirement for real-world robotic missions. Ad-
ditionally, a risk-aware analysis framework was developed to quantify and assess
potential violations of STL specifications under uncertainties in human pose, pro-
viding criteria to determine when re-execution of the planning problem is necessary.
The planner was validated through extensive simulations conducted in MATLAB and
Gazebo, demonstrating its effectiveness in achieving safe and efficient collaboration.
Future research will focus on conducting field experiments in mock-up scenar-
ios that closely replicate real-world conditions, further demonstrating the method’s
practicality and robustness beyond the Gazebo simulation environment. Additionally,
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efforts will focus on integrating human operator fatigue into the problem formulation
by introducing adaptive weights for Boolean and temporal operators, allowing dy-
namic modulation of robustness based on the operator’s state. These advancements
will further strengthen the proposed approach, ensuring safer, more efficient, and
adaptable human-robot collaboration in practical deployments.
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